Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Overview

Lane Follower

This code is for the lane follower, including perception and control, as shown below.

Structure

Environment

  1. Hardware
    • Industrial Camera
    • Intel-NUC(10FNK)
  2. Software
    • Ubuntu18.04
    • Python3.6
    • OpenCV4.2
    • PyTorch1.8.1

    See environment.txt for details.

How to use

A. Offline Testing

The code supports the offline testing, which takes the offline video as input and output the demo video.

python offline_test.py

B. OnLine Testing

The code also supports the online testing, which takes the real-time video streaming from the industrial camera as input and controls the vehicle.

python online_test.py

C. Demo

You can find the offline testing video and the corresponding demo video here [n25o].

demo

Details

Detailed structure

detailed-structure

Code Info

  • offline_test.py --- Offline testing

  • online_test.py --- Online testing

  • basic_function --- Some Basic Function

    • show_img(name, img): Show the image
    • find_files(directory, pattern): Method to find target files in one directory, including subdirectory
    • get_M_Minv(): Get Perspective Transform
    • draw_area(img_origin, img_line, Minv, left_fit, right_fit): Draw the road area in the image
    • draw_demo(img_result, img_bin, img_canny, img_line, img_line_warp, img_bev_result, curvature, distance_from_center, steer): Generate the Demo image
  • lib_camera --- Class for the industrial camera

    • open(): Open the camera
    • grab(): Grab an image from the camera
    • close(): Close the camera
  • mvsdk --- Official lib for the industrial camera

  • lib_can --- Class for the CAN

    • OpenDevice(): Open the CAN device
    • InitCAN(can_idx=0): Init the CAN
    • StartCan(can_idx=0): Start the CAN
    • Send(can_idx, id, frame_len, data): Send messages to CAN
    • Listen(can_idx, id, try_cnt=10): Receive messages from CAN
    • CloseDevice(): Close the CAN device
  • lib_LaneDetector --- Class for the lane detector

    • detect_line(img_input, steer, memory, debug=False): Main Function
    • pre_process(img, debug=False): Image Preprocessing
    • find_line(img, memory, debug=False): Detect the lane using Sliding Windows Methods
    • calculate_curv_and_pos(img_line, left_fit, right_fit): Calculate the curvature & distance from the center
  • lib_ObjectDetector --- Class for the traffic object detector based on YOLO5

    • load_model(): Load Yolo5 model from pytorch hub
    • detect(frame, img_area): Predict and analyze using yolo5
    • class_to_label(idx): Return the corresponding string label for a given label value
    • plot_detections(results, frame): Takes a frame and its results as input, and plots the bounding boxes and label on to the frame
  • lib_vehicle --- Class for the vehicle model and vehicle control

    • steer_cal(curvature, dist_from_center): Calculate the steer according to the curvature of the lane and the distance form the center
    • steer_ctrl(): Control the steer by sending the signal via CAN
    • steer_get(): Get the real steer of the vehicle via the CAN
  • libcontrolcan.so --- DLL for the CAN device

  • libMVSDK.so --- DLL for the industrial camera

Owner
Siqi Fan
Graduate Student @ IA, CAS (2019 ~ now) B.E. @ Shanghai Jiao Tong University (SJTU,2015~2019)
Siqi Fan
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022
This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans

This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans. TABS relies on a Res-Unet backbone, with a Vision

6 Nov 07, 2022
Near-Duplicate Video Retrieval with Deep Metric Learning

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

2 Jan 24, 2022
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
Code & Data for the Paper "Time Masking for Temporal Language Models", WSDM 2022

Time Masking for Temporal Language Models This repository provides a reference implementation of the paper: Time Masking for Temporal Language Models

Guy Rosin 12 Jan 06, 2023
Secure Distributed Training at Scale

Secure Distributed Training at Scale This repository contains the implementation of experiments from the paper "Secure Distributed Training at Scale"

Yandex Research 9 Jul 11, 2022
A crash course in six episodes for software developers who want to become machine learning practitioners.

Featured code sample tensorflow-planespotting Code from the Google Cloud NEXT 2018 session "Tensorflow, deep learning and modern convnets, without a P

Google Cloud Platform 2.6k Jan 08, 2023
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
This code is for eCaReNet: explainable Cancer Relapse Prediction Network.

eCaReNet This code is for eCaReNet: explainable Cancer Relapse Prediction Network. (Towards Explainable End-to-End Prostate Cancer Relapse Prediction

Institute of Medical Systems Biology 2 Jul 28, 2022
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

Vision and Language Group@ MIL 23 Dec 21, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
ESP32 python application to read data from a Tilt™ Hydrometer for homebrewing

TitlESP32 ESP32 MicroPython application to read and log data from a Tilt™ Hydrometer. Requirements A board with an ESP32 chip USB cable - USB A / micr

IoBeer 5 Dec 01, 2022
Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Learning the Best Pooling Strategy for Visual Semantic Embedding Official PyTorch implementation of the paper Learning the Best Pooling Strategy for V

Jiacheng Chen 106 Jan 06, 2023
Second-Order Neural ODE Optimizer, NeurIPS 2021 spotlight

Second-order Neural ODE Optimizer (NeurIPS 2021 Spotlight) [arXiv] ✔️ faster convergence in wall-clock time | ✔️ O(1) memory cost | ✔️ better test-tim

Guan-Horng Liu 39 Oct 22, 2022
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" [arXiv 2022].

Smooth ReLU in PyTorch Unofficial PyTorch reimplementation of the Smooth ReLU (SmeLU) activation function proposed in the paper Real World Large Scale

Christoph Reich 10 Jan 02, 2023
AI grand challenge 2020 Repo (Speech Recognition Track)

KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지) 본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다. 본 개발자들이 참여한 2020 인공지

Young-Seok Choi 23 Jan 25, 2022
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023