Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch

Overview

NÜWA - Pytorch (wip)

Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be populated in the case that Microsoft does not open source the code by end of December. It may also contain an extension into video and audio, using a dual decoder approach.

DeepReader

Citations

@misc{wu2021nuwa,
    title   = {N\"UWA: Visual Synthesis Pre-training for Neural visUal World creAtion}, 
    author  = {Chenfei Wu and Jian Liang and Lei Ji and Fan Yang and Yuejian Fang and Daxin Jiang and Nan Duan},
    year    = {2021},
    eprint  = {2111.12417},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
Comments
  • Question about generated videos?

    Question about generated videos?

    There are a lot of negative numbers and very small decimals (like 5e-1). But the loss degrades normally when training. Is that a normal situation? How can I make the result visible?

    opened by Fitzwong 0
  • Why the video does not pass through the encoder?

    Why the video does not pass through the encoder?

    Hi! lucidrains. Thanks for providing a great repo which is convenient to understand the NUWA paper.
    I have a question as follows: In the NUWA paper, we can see that the inputs of the Encoder are caption tokens (caption condition) and the video tokens (3DNA condition). So, in my eye, the video tokens sequence should fully self-attend in the Encoder, right? And then, the outputs condition the Decoder. The Decoder provided by you is as following. 截屏2022-05-12 上午11 07 12. It has causal self-attention and text-condition as we expected. But from the definition in paper, the condition contains the text-condition and 3DNA condition, and these two condition the Decoder. Is my opinion right? I am just curious about the condition in the NUWA paper. The Encoder in your repo is only the Text-Encoder, but the video does not pass through the encoder to condition the Encoder.

    Looking forward to your reply! Thanks!

    opened by Wang-Xiaodong1899 0
  • Questions about function forward() in NUWA please.

    Questions about function forward() in NUWA please.

    I'm confused me that, in function forward() of class NUWA, the ground-truth video is fed to transformer and calculate the output video, which is different from function generate().

    frame_embeddings = self.video_transformer(
                frame_embeddings,  # calculated from ground-truth video
                context = text_embeds,
                context_mask = text_mask
            )
    

    So when training NUWA, the loss comes from logits. But the logits are not only from text, but ground-truth video (only one transformer layer, different from the auto-regressive model in generate function). Is that some kind of cheating when training? Or should I generate logits in the same way as in generate(), and then calculate loss to train?

    opened by Fitzwong 1
  • Type of dataset for training VQ-GAN

    Type of dataset for training VQ-GAN

    Hi,

    First, thanks a lot for the amazing work! I have one question regarding the training of the VQ-GAN, do you recommend training it on a dataset similar to the dataset the nuwa model will be trained? What I mean is, if I want to train nuwa to generate sport videos based on text, do I need to also train the VQ-GAN on a sport dataset?

    Thanks a lot

    opened by antonibigata 0
  • Pseudocode for 3DNA?

    Pseudocode for 3DNA?

    me no comprendai le complex einops 😢

    Can someone give the 3DNA pseudocode to illustrate what's going on 🤗

    (Also how did lucidrains bang out thousands of lines of code in a few weeks - is he confirmed to be human? 🤔)

    opened by neel04 4
Releases(0.7.7a)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021
REBEL: Relation Extraction By End-to-end Language generation

REBEL: Relation Extraction By End-to-end Language generation This is the repository for the Findings of EMNLP 2021 paper REBEL: Relation Extraction By

Babelscape 222 Jan 06, 2023
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

Katherine Crowson 53 Dec 29, 2022
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)

FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation

77 Dec 28, 2022
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks

YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

Adam Van Etten 145 Jan 01, 2023
🥇 LG-AI-Challenge 2022 1위 솔루션 입니다.

LG-AI-Challenge-for-Plant-Classification Dacon에서 진행된 농업 환경 변화에 따른 작물 병해 진단 AI 경진대회 에 대한 코드입니다. (colab directory에 코드가 잘 정리 되어있습니다.) Requirements python

siwooyong 10 Jun 30, 2022
Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

🦩 Flamingo - Pytorch Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the p

Phil Wang 630 Dec 28, 2022
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

causal-bald | Abstract | Installation | Example | Citation | Reproducing Results DUE An implementation of the methods presented in Causal-BALD: Deep B

OATML 13 Oct 07, 2022
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022
UMich 500-Level Mobile Robotics Course

MOBILE ROBOTICS: METHODS & ALGORITHMS - WINTER 2022 University of Michigan - NA 568/EECS 568/ROB 530 For slides, lecture notes, and example codes, see

393 Dec 29, 2022
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
An open-source project for applying deep learning to medical scenarios

Auto Vaidya An open source solution for creating end-end web app for employing the power of deep learning in various clinical scenarios like implant d

Smaranjit Ghose 18 May 29, 2022
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
Implementation of Hierarchical Transformer Memory (HTM) for Pytorch

Hierarchical Transformer Memory (HTM) - Pytorch Implementation of Hierarchical Transformer Memory (HTM) for Pytorch. This Deepmind paper proposes a si

Phil Wang 63 Dec 29, 2022
Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.

C2-Matching (CVPR2021) This repository contains the implementation of the following paper: Robust Reference-based Super-Resolution via C2-Matching Yum

Yuming Jiang 151 Dec 26, 2022
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Ben Hayes 169 Dec 23, 2022