Image inpainting using Gaussian Mixture Models

Overview

dmfa_inpainting

Source code for:

Requirements

Python 3.8 or higher is required. Models have been implemented with PyTorch.

To install the requirements, running:

pip install -r requirements.txt

should suffice.

Running

To train the DMFA model, see the script:

python scripts/train_inpainter.py --h

To run classifier / WAE experiments, see the scripts:

python scripts/train_classifier_v2.py --h
python scripts/train_wae_v2.py --h

respectively.

Moreover, in the scripts/ directory we provide the *.sh scripts which run the model trainings with the same parameters as used in the paper.

All experiments are runnable on a single Nvidia GPU.

Inpainters used with classifiers and WAE

In order to run a classifier / WAE with DMFA, one must train the DMFA model first with the above script.

For some of the inpainters we compare our approach to, additional repositories must be cloned or installed:

DMFA Weights

We provide DMFA training results (among which are JSONs, weights and training arguments) here.

We provide results for following models, trained on complete and incomplete data:

  • MNIST - linear heads
  • SVHN - fully convolutional
  • CIFAR-10 - fully convolutional
  • CelebA - fully convolutional, trained on 64x64 images

Notebooks

There are several Jupyter Notebooks in the notebooks directory. They were used for initial experiments with the DMFA models, as well as analysis of the results and calculating metrics reported in the paper.

The notebooks are not guaranteed to run 100% correctly due to the subsequent code refactor.

Citation

If you find our work useful, please consider citing us!

@misc{przewięźlikowski2021misconv,
      title={MisConv: Convolutional Neural Networks for Missing Data}, 
      author={Marcin Przewięźlikowski and Marek Śmieja and Łukasz Struski and Jacek Tabor},
      year={2021},
      eprint={2110.14010},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
@article{Przewiezlikowski_2020,
   title={Estimating Conditional Density of Missing Values Using Deep Gaussian Mixture Model},
   ISBN={9783030638368},
   ISSN={1611-3349},
   url={http://dx.doi.org/10.1007/978-3-030-63836-8_19},
   DOI={10.1007/978-3-030-63836-8_19},
   journal={Lecture Notes in Computer Science},
   publisher={Springer International Publishing},
   author={Przewięźlikowski, Marcin and Śmieja, Marek and Struski, Łukasz},
   year={2020},
   pages={220–231}
}
Owner
Marcin Przewięźlikowski
https://mprzewie.github.io/
Marcin Przewięźlikowski
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
The official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang Gong, Yi Ma. "Fully Convolutional Line Parsing." *.

F-Clip — Fully Convolutional Line Parsing This repository contains the official PyTorch implementation of the paper: *Xili Dai, Xiaojun Yuan, Haigang

Xili Dai 115 Dec 28, 2022
PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.

PEPit: Performance Estimation in Python This open source Python library provides a generic way to use PEP framework in Python. Performance estimation

Baptiste 53 Nov 16, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
Accelerating BERT Inference for Sequence Labeling via Early-Exit

Sequence-Labeling-Early-Exit Code for ACL 2021 paper: Accelerating BERT Inference for Sequence Labeling via Early-Exit Requirement: Please refer to re

李孝男 23 Oct 14, 2022
Object Detection using YOLO from PyImageSearch

Object Detection using YOLO from PyImageSearch By applying object detection, you’ll not only be able to determine what is in an image, but also where

Mohamed NIANG 1 Feb 09, 2022
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
Computational Methods Course at UdeA. Forked and size reduced from:

Computational Methods for Physics & Astronomy Book version at: https://restrepo.github.io/ComputationalMethods by: Sebastian Bustamante 2014/2015 Dieg

Diego Restrepo 11 Sep 10, 2022
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape

Antonin Schrab 5 Dec 15, 2022
Attention over nodes in Graph Neural Networks using PyTorch (NeurIPS 2019)

Intro This repository contains code to generate data and reproduce experiments from our NeurIPS 2019 paper: Boris Knyazev, Graham W. Taylor, Mohamed R

Boris Knyazev 242 Jan 06, 2023
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"

Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w

David Mohlin 1 Dec 04, 2021
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

causal-bald | Abstract | Installation | Example | Citation | Reproducing Results DUE An implementation of the methods presented in Causal-BALD: Deep B

OATML 13 Oct 07, 2022