Image inpainting using Gaussian Mixture Models

Overview

dmfa_inpainting

Source code for:

Requirements

Python 3.8 or higher is required. Models have been implemented with PyTorch.

To install the requirements, running:

pip install -r requirements.txt

should suffice.

Running

To train the DMFA model, see the script:

python scripts/train_inpainter.py --h

To run classifier / WAE experiments, see the scripts:

python scripts/train_classifier_v2.py --h
python scripts/train_wae_v2.py --h

respectively.

Moreover, in the scripts/ directory we provide the *.sh scripts which run the model trainings with the same parameters as used in the paper.

All experiments are runnable on a single Nvidia GPU.

Inpainters used with classifiers and WAE

In order to run a classifier / WAE with DMFA, one must train the DMFA model first with the above script.

For some of the inpainters we compare our approach to, additional repositories must be cloned or installed:

DMFA Weights

We provide DMFA training results (among which are JSONs, weights and training arguments) here.

We provide results for following models, trained on complete and incomplete data:

  • MNIST - linear heads
  • SVHN - fully convolutional
  • CIFAR-10 - fully convolutional
  • CelebA - fully convolutional, trained on 64x64 images

Notebooks

There are several Jupyter Notebooks in the notebooks directory. They were used for initial experiments with the DMFA models, as well as analysis of the results and calculating metrics reported in the paper.

The notebooks are not guaranteed to run 100% correctly due to the subsequent code refactor.

Citation

If you find our work useful, please consider citing us!

@misc{przewięźlikowski2021misconv,
      title={MisConv: Convolutional Neural Networks for Missing Data}, 
      author={Marcin Przewięźlikowski and Marek Śmieja and Łukasz Struski and Jacek Tabor},
      year={2021},
      eprint={2110.14010},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
@article{Przewiezlikowski_2020,
   title={Estimating Conditional Density of Missing Values Using Deep Gaussian Mixture Model},
   ISBN={9783030638368},
   ISSN={1611-3349},
   url={http://dx.doi.org/10.1007/978-3-030-63836-8_19},
   DOI={10.1007/978-3-030-63836-8_19},
   journal={Lecture Notes in Computer Science},
   publisher={Springer International Publishing},
   author={Przewięźlikowski, Marcin and Śmieja, Marek and Struski, Łukasz},
   year={2020},
   pages={220–231}
}
Owner
Marcin Przewięźlikowski
https://mprzewie.github.io/
Marcin Przewięźlikowski
TorchX: A PyTorch Extension Library for More Efficient Deep Learning

TorchX TorchX: A PyTorch Extension Library for More Efficient Deep Learning. @misc{torchx, author = {Ansheng You and Changxu Wang}, title = {T

Donny You 8 May 28, 2022
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)

K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge

Microsoft 118 Dec 13, 2022
Smart edu-autobooking - Johnson @ DMI-UNICT study room self-booking system

smart_edu-autobooking Sistema di autoprenotazione per l'aula studio [email protected]

Davide Carnemolla 17 Jun 20, 2022
The code of “Similarity Reasoning and Filtration for Image-Text Matching” [AAAI2021]

SGRAF PyTorch implementation for AAAI2021 paper of “Similarity Reasoning and Filtration for Image-Text Matching”. It is built on top of the SCAN and C

Ronnie_IIAU 149 Dec 22, 2022
Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Facebook Research 69 Dec 29, 2022
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Tamar Rott Shaham 100 Dec 28, 2022
Machine learning algorithms for many-body quantum systems

NetKet NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and

NetKet 413 Dec 31, 2022
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
Improving Machine Translation Systems via Isotopic Replacement

CAT (Improving Machine Translation Systems via Isotopic Replacement) Machine translation plays an essential role in people’s daily international commu

Zeyu Sun 10 Nov 30, 2022
JstDoS - HTTP Protocol Stack Remote Code Execution Vulnerability

jstDoS If you are going to skid that, please give credits ! ^^ ¿How works? This

apolo 4 Feb 11, 2022
Action Recognition for Self-Driving Cars

Action Recognition for Self-Driving Cars This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at

VITA lab at EPFL 3 Apr 07, 2022
I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining

I-SECRET This is the implementation of the MICCAI 2021 Paper "I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive con

13 Dec 02, 2022
A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu

Google Research 258 Dec 29, 2022
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
Face recognition project by matching the features extracted using SIFT.

MV_FaceDetectionWithSIFT Face recognition project by matching the features extracted using SIFT. By : Aria Radmehr Professor : Ali Amiri Dependencies

Aria Radmehr 4 May 31, 2022
Pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments

Cascaded-FCN This repository contains the pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments the liver and its lesions out of

300 Nov 22, 2022
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets)

MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets) Using mixup data augmentation as reguliraztion and tuning the hyper par

Bhanu 2 Jan 16, 2022
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 01, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

64 Jan 05, 2023