Simple embedded in memory json database

Overview

Build Status Coverage Version Supported Downloads License

dbj

dbj is a simple embedded in memory json database.

It is easy to use, fast and has a simple query language.

The code is fully documented, tested and beginner friendly.

Only the standard library is used and it works on Python 2.7, Python 3.4+, PyPy 2.7 and PyPy 3.6.

Usage

>> r = db.find('name == "John" or name == "Bob" and age > 10') >>> db.getmany(r) [{'name': 'Bob', 'age': 30}, {'name': 'John', 'age': 18}] >>> # Sort the result by age >>> r = db.sort(r, 'age') >>> db.getmany(r) [{'name': 'John', 'age': 18}, {'name': 'Bob', 'age': 30}] >>> # Sort can also be used from find directly >>> r = db.find('age >= 10', sortby='age') >>> db.getmany(r) [{'name': 'Ana Beatriz', 'age': 10}, {'name': 'John', 'age': 18}, {'name': 'Bob', 'age': 30}] >>> # One-liner: >>> db.getmany(db.find('age >= 10', sortby='age')) [{'name': 'Ana Beatriz', 'age': 10}, {'name': 'John', 'age': 18}, {'name': 'Bob', 'age': 30}] >>> db.save() True">
>>> from dbj import dbj
>>> db = dbj('mydb.json')

>>> # Insert using an auto generated uuid1 key
>>> db.insert({'name': 'John', 'age': 18})
'a71d90ce0c7611e995faf23c91392d78'

>>> # Insert using a supplied key, in this case '[email protected]'
>>> user = {'name': 'Ana Beatriz', 'age': 10}
>>> db.insert(user, '[email protected]')
'[email protected]'

>>> db.insert({'name': 'Bob', 'age': 30})
'cc6ddfe60c7611e995faf23c91392d78'

>>> db.get('a71d90ce0c7611e995faf23c91392d78')
{'name': 'John', 'age': 18}

>>> db.get('[email protected]')
{'name': 'Ana Beatriz', 'age': 10}

>>> db.find('age >= 18')
['a71d90ce0c7611e995faf23c91392d78', 'cc6ddfe60c7611e995faf23c91392d78']

>>> db.find('name == "ana beatriz"')
['[email protected]']

>>> r = db.find('name == "John" or name == "Bob" and age > 10')
>>> db.getmany(r)
[{'name': 'Bob', 'age': 30}, {'name': 'John', 'age': 18}]

>>> # Sort the result by age
>>> r = db.sort(r, 'age')
>>> db.getmany(r)
[{'name': 'John', 'age': 18}, {'name': 'Bob', 'age': 30}]

>>> # Sort can also be used from find directly
>>> r = db.find('age >= 10', sortby='age')
>>> db.getmany(r)
[{'name': 'Ana Beatriz', 'age': 10}, {'name': 'John', 'age': 18}, {'name': 'Bob', 'age': 30}]

>>> # One-liner:
>>> db.getmany(db.find('age >= 10', sortby='age'))
[{'name': 'Ana Beatriz', 'age': 10}, {'name': 'John', 'age': 18}, {'name': 'Bob', 'age': 30}]

>>> db.save()
True

Install

Install using pip:

$ pip install dbj

Examples

Check the available commands for a full list of supported methods.

Import the module and create a new database:

>>> from dbj import dbj
>>> db = dbj('mydb.json')

Insert a few documents with auto generated key:

>>> doc = {'name': 'John Doe', 'age': 18}
>>> db.insert(doc)
'7a5ebd420cb211e98a0ff23c91392d78'

>>> docs = [{'name': 'Beatriz', 'age': 30}, {'name': 'Ana', 'age': 10}]
>>> db.insertmany(docs)
2

Insert with a supplied key:

>>> doc = {'name': 'john', 'age': 20, 'country': 'Brasil'}
>>> db.insert(doc, '1')
1

>>> db.insert({'name': 'Bob', 'age': 40}, '2')
2

>>> db.getallkeys()
['7a5ebd420cb211e98a0ff23c91392d78', 'db21baf80cb211e98a0ff23c91392d78', 'db21edde0cb211e98a0ff23c91392d78', '1', '2']

Pop and delete:

>>> db.delete('1')
True

>>> db.poplast()
{'name': 'Bob', 'age': 40}

>>> db.size()
3

>>> db.getallkeys()
['7a5ebd420cb211e98a0ff23c91392d78', 'db21baf80cb211e98a0ff23c91392d78', 'db21edde0cb211e98a0ff23c91392d78']

Updating an existing document:

>>> db.insert({'name': 'Ethan', 'age': 40}, '1000')
'1000'

>>> db.get('1000')
{'name': 'Ethan', 'age': 40}

>>> db.update('1000', {'age': 50})
True

>>> db.get('1000')
{'name': 'Ethan', 'age': 50}

>>> db.update('1000', {'name': 'Ethan Doe', 'gender': 'male'})
True

>>> db.pop('1000')
{'name': 'Ethan Doe', 'age': 50, 'gender': 'male'}

Retrieving some documents:

>>> db.getall()
[{'name': 'John Doe', 'age': 18}, {'name': 'Beatriz', 'age': 30}, {'name': 'Ana', 'age': 10}]

>>> db.getfirst()
{'name': 'John Doe', 'age': 18}

>>> db.getlast()
{'name': 'Ana', 'age': 10}

>>> db.getrandom() # returns a random document
{'name': 'Ana', 'age': 10}

Check for existance:

>>> db.exists('7a5ebd420cb211e98a0ff23c91392d78')
True

Searchin and sorting:

>> db.getmany(r) [{'name': 'John Doe', 'age': 18}] >>> query = 'name == "john doe" or name == "ana" and age >= 10' >>> r = db.find(query) >>> db.getmany(r) [{'name': 'John Doe', 'age': 18}, {'name': 'Ana', 'age': 10}] >>> r = db.find('age < 40', sortby='age') >>> db.getmany(r) [{'name': 'Ana', 'age': 10}, {'name': 'John Doe', 'age': 18}, {'name': 'Beatriz', 'age': 30}]">
>>> r = db.sort(db.getallkeys(), 'name')
>>> db.getmany(r)
[{'name': 'Ana', 'age': 10}, {'name': 'Beatriz', 'age': 30}, {'name': 'John Doe', 'age': 18}]

>>> r = db.find('name ?= "john"')
>>> db.getmany(r)
[{'name': 'John Doe', 'age': 18}]

>>> query = 'name == "john doe" or name == "ana" and age >= 10'
>>> r = db.find(query)
>>> db.getmany(r)
[{'name': 'John Doe', 'age': 18}, {'name': 'Ana', 'age': 10}]

>>> r = db.find('age < 40', sortby='age')
>>> db.getmany(r)
[{'name': 'Ana', 'age': 10}, {'name': 'John Doe', 'age': 18}, {'name': 'Beatriz', 'age': 30}]

Save the database to disk:

>>> db.save()
True

To save a prettified json, use indent:

>>> db.save(indent=4)
True

Enable auto saving to disk after a insert, update or delete:

>>> db = dbj('mydb.json', autosave=True)

About the simple query language

The query for the find command uses the following pattern:

field operator value and/or field operator value...

Spaces are mandatory and used as a separator by the parser. For example, the following query will not work:

name=="John" and age >=18

A valid example:

name == "John Doe" and age >= 18

Strings must be enclosed by quotes. Quoted text can be searched using double quotes as the string delimiter, like:

name == ""Bob "B" Lee""

Please note that if value is a string, a search for text will be executed (using the string operatos below) and if value is a number, a number comparison search will be used.

The supported string operators are:

'==' -> Exact match. 'John' will not match 'John Doe' but will match 'john'
by default. If case sensitive is desired, just use find with sens=True. See
available commands below for the full find method signature.

'?=' -> Partial match. In this case, 'John' will match 'John Doe'.

'!=' -> Not equal operator.

The numbers comparison operators are:

'==', '!=', '<', '<=', '>', '>='

The supported logical operatos are:

and, or

Important changes

0.1.4:

  • The insert() method will raise a TypeError exception if the document dict is not json serializable.

Performance

Since the entire database is an OrderedDict in memory, performance is pretty good. On a cheap single core VM it can handle dozens of thousands operations per second.

A simple benchmark is included to get a roughly estimative of operations per second. Here is the result on a $5 bucks Linode VM running on Python 3.6:

$ python3.6 bench_dbj.py

--------------------------------

Inserting 100000 documents using auto generated uuid1 key...
Done! Time spent: 3.23s
Inserted: 100000
Rate: 30995 ops/s

--------------------------------

Clearing the database...
Done!

--------------------------------

Inserting 100000 documents using a supplied key...
Done! Time spent: 1.26s
Inserted: 100000
Rate: 79587 ops/s

--------------------------------

Retrieving 100000 documents one at a time...
Done! Time spent: 1.61s
Retrieved: 100000
Rate: 62136 ops/s

--------------------------------

Saving database to disk...
Done! Time spent: 1.09s

--------------------------------

Deleting 100000 documents one at a time...
Done! Time spent: 0.22s
Deleted: 100000
Rate: 450764 ops/s

--------------------------------

Removing file...
Done!

Peak memory usage: 57.37 MB

Available commands

insert(document, key=None) -> Create a new document on database.
Args:
document (dict): The document to be created.
key (str, optional): The document unique key. Defaults to uuid1.
Returns:
The document key.
insertmany(documents) -> Insert multiple documents on database.
Args:
documents (list): List containing the documents to insert.
Returns:
Number of inserted documents.
save(indent=None) -> Save database to disk.
Args:
indent (int or str, optional): If provided, save a prettified json with that indent level. 0, negative or "" will only insert newlines.
Returns:
True if successful.
clear() -> Remove all documents from database.
Returns:
True if successful.
size() -> Return the database size.
Returns:
Number of documents on database.
exists(key) -> Check if a document exists on database.
Args:
key (str): The document key.
Returns:
True or False if it does not exist.
delete(key) -> Delete a document on database.
Args:
key (str): The document key.
Returns:
True or False if it does not exist.
deletemany(keys) -> Delete multiple documents on database.
Args:
keys (list): List containing the keys of the documents to delete.
Returns:
Number of deleted documents.
update(key, values) -> Add/update values on a document.
Args:
key (str): The document key.
values (dict): The values to be added/updated.
Returns:
True or False if document does not exist.
updatemany(keys, values) -> Add/update values on multiple documents.
Args:
keys (list): List containing the keys of the documents to update.
values (dict): The values to be added/updated.
Returns:
Number of updated documents.
get(key) -> Get a document on database.
Args:
key (str): The document key.
Returns:
The document or False if it does not exist.
getmany(keys) -> Get multiple documents from database.
Args:
keys (list): List containing the keys of the documents to retrieve.
Returns:
List of documents.
getall() -> Return a list containing all documents on database.
Returns:
List with all database documents.
getallkeys() -> Return a list containing all keys on database.
Returns:
List with all database keys.
getrandom() -> Get a random document on database.
Returns:
A document or False if database is empty.
getfirst() -> Get the first inserted document on database.
Returns:
The first inserted document or False if database is empty.
getlast() -> Get the last inserted document on database.
Returns:
The last inserted document or False if database is empty.
getfirstkey() -> Get the first key on database.
Returns:
The first key or False if database is empty.
getlastkey() -> Get the last key on database.
Returns:
The last key or False if database is empty.
pop(key) -> Get the document from database and remove it.
Args:
key (str): The document key.
Returns:
The document or False if it does not exist.
popfirst() -> Get the first inserted document on database and remove it.
Returns:
The first inserted document or False if database is empty.
poplast() -> Get the last inserted document on database and remove it.
Returns:
The last inserted document or False if database is empty.
sort(keys, field, reverse=False) -> Sort the documents using the field provided.
Args:
keys (list): List containing the keys of the documents to sort.
field (str): Field to sort.
reverse (bool, optional): Reverse search. Defaults to False.
Returns:
Sorted list with the documents keys.
findtext(field, text, exact=False, sens=False, inverse=False, asc=True) -> Simple text search on the provided field.
Args:
field (str): The field to search.
text (str): The value to be searched.
exact (bool, optional): Exact text match. Defaults to False.
sens (bool, optional): Case sensitive. Defaults to False.
inverse (bool, optional): Inverse search, return the documents that do not match the search. Defaults to False.
asc (bool, optional): Ascii conversion before matching, this matches text like 'cafe' and 'café'. Defaults to True.
Returns:
List with the keys of the documents that matched the search.
findnum(expression) -> Simple number comparison search on provided field.
Args:
expression (str): The comparison expression to use, e.g., "age >= 18". The pattern is 'field operator number'.
Returns:
List with the keys of the documents that matched the search.
find(query, sens=False, asc=True, sortby=None, reverse=False) -> Simple query like search.
Args:
query (str): The query to use.
sens (bool, optional): Case sensitive. Defaults to False.
asc (bool, optional): Ascii conversion before matching, this matches text like 'cafe' and 'café'. Defaults to True.
sortby (string, optional): Sort using the provided field.
reverse (bool, optional): Reverse sort. Defaults to False.
Returns:
List with the keys of the documents that matched the search.
Owner
Pedro Gonring
Pedro Gonring
Лабораторные работы по Postgresql за 5 семестр

Практикум по Postgresql ERD для заданий 2.x: ERD для заданий 3.x: Их делал вот тут Ниже есть 2 инструкции — по установке postgresql на manjaro и по пе

Danila 10 Oct 31, 2022
A Persistent Embedded Graph Database for Python

Cog - Embedded Graph Database for Python cogdb.io New release: 2.0.5! Installing Cog pip install cogdb Cog is a persistent embedded graph database im

Arun Mahendra 214 Dec 30, 2022
Tiny local JSON database for Python.

Pylowdb Simple to use local JSON database 🦉 # This is pure python, not specific to pylowdb ;) db.data['posts'] = ({ 'id': 1, 'title': 'pylowdb is awe

Hussein Sarea 3 Jan 26, 2022
Migrate data from SQL to NoSQL easily

Migrate data from SQL to NoSQL easily Installation 💯 pip install sql2nosql --upgrade Dependencies 📢 For the package to work, it first needs "clients

Facundo Padilla 43 Mar 26, 2022
A Painless Simple Way To Create Schema and Do Database Operations Quickly In Python

PainlessDB - Taking Your Pain away to the moon 🚀 Contribute · Community · Documentation 🎫 Introduction : PainlessDB is a Python-based free and open-

Aiden Ellis 3 Jul 15, 2022
Youtube Kanalinda tanittigim ve Programladigim SQLite3 ile calisan Kütüphane Programi

SQLite3 Kütüphane Uygulamasi SQLite3 ile calisan Kütüphane Arayüzü Yükleme Yerel veritabani olusacaktir. Yaptiginiz islemler kaybolmaz! Temel Gereksin

Mikael Pikulski 6 Aug 13, 2022
Python function to extract all the rows from a SQLite database file while iterating over its bytes, such as while downloading it

Python function to extract all the rows from a SQLite database file while iterating over its bytes, such as while downloading it

Department for International Trade 16 Nov 09, 2022
Code for a db backend that relies on bash tools (grep, cat, echo, etc)

Simple-nosql-db is a python backend for a database that relies on unix tools such as cat, echo and grep. Funny enough I got the idea from this discuss

Sebastian Alonso 10 Aug 13, 2019
Tools for analyzing Git history using SQLite

git-history Tools for analyzing Git history using SQLite Installation Install this tool using pip: $ pip install git-history Usage This tool can be r

Simon Willison 128 Jan 02, 2023
This is a simple graph database in SQLite, inspired by

This is a simple graph database in SQLite, inspired by "SQLite as a document database".

Denis Papathanasiou 1.2k Jan 03, 2023
Mongita is to MongoDB as SQLite is to SQL

Mongita is a lightweight embedded document database that implements a commonly-used subset of the MongoDB/PyMongo interface. Mongita differs from MongoDB in that instead of being a server, Mongita is

Scott Rogowski 809 Jan 07, 2023
A Python wrapper API for operating and working with the Neo4j Graph Data Science (GDS) library

gdsclient This repo hosts the sources for gdsclient, a Python wrapper API for operating and working with the Neo4j Graph Data Science (GDS) library. g

Neo Technology 101 Jan 05, 2023
LightDB is a lightweight JSON Database for Python

LightDB What is this? LightDB is a lightweight JSON Database for Python that allows you to quickly and easily write data to a file Installing pip3 ins

Stanislaw 14 Oct 01, 2022
LaikaDB, banco de dados para projetos simples.

LaikaDB LaikaDB é um banco de dados noSQL para uso local e simples, onde você pode realizar gravações e leituras de forma eficiente e simples. Todos o

Jaedson Silva 0 Jun 24, 2022
PathfinderMonsterDatabase - A database of all monsters in Pathfinder 1e, created by parsing aonprd.com

PathfinderMonsterDatabase A database of all monsters in Pathfinder 1e, created by parsing aonprd.com Setup Run the following line to install all requi

Yoni Lerner 11 Jun 12, 2022
Metrics-advisor - Analyze reshaped metrics from TiDB cluster Prometheus and give some advice about anomalies and correlation.

metrics-advisor Analyze reshaped metrics from TiDB cluster Prometheus and give some advice about anomalies and correlation. Team freedeaths mashenjun

3 Jan 07, 2022
A fast ordered NoSQL database.

MerkavaDB Note This is still in active development. Things will change. If you are interested in helping out, or would like to see any particular feat

Adam Hopkins 6 Sep 29, 2022
A NoSQL database made in python.

CookieDB A NoSQL database made in python.

cookie 1 Nov 30, 2022
Oh-My-PickleDB is an open source key-value store using Python's json module.

OH-MY-PICKLEDB oh-my-pickleDB is a lightweight, fast, and intuitive data manager written in python 📝 Table of Contents About Getting Started Deployme

Adrián Toral 6 Feb 20, 2022
MyReplitDB - the most simplistic and easiest wrapper to use for replit's database system.

MyReplitDB is the most simplistic and easiest wrapper to use for replit's database system. Installing You can install it from the PyPI Or y

kayle 4 Jul 03, 2022