Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Related tags

Deep LearningTGAN-SR
Overview

Generating Symbolic Reasoning Problems with Transformer GANs

This is the implementation of the paper Generating Symbolic Reasoning Problems with Transformer GANs.

Constructing training data for symbolic reasoning domains is challenging: On the one hand existing instances are typically hand-crafted and too few to be trained on directly, on the other hand synthetically generated instances are often hard to evaluate in terms of their meaningfulness.

We provide a GAN and a Wasserstein GAN equipped with Transformer encoders to generate sensible and challenging training data for symbolic reasoning domains. Even without autoregression, the GAN models produce syntactically correct problem instances. The generated data can be used as a substitute for real training data, and, especially, the training data can be generated from a real data set that is too small to be trained on directly.

For example, the models produced the following correct mathematical expressions:

and the following correct Linear-time Temporal Logic (LTL) formulas used in verification:

Installation

The code is shipped as a Python package that can be installed by executing

pip install -e .

in the impl directory (where setup.py is located). Python version 3.6 or higher is required. Additional dependencies such as tensorflow will be installed automatically. To generate datasets or solve instances immediately after generation, the LTL satisfiability checking tool aalta is required as binary. It can be obtained from bitbucket (earliest commit in that repository). After compiling, ensure that the binary aalta resides under the bin folder.

Datasets

A zip file containing our original datasets can be downloaded from here. Unpack its contents to the datasets directory.

Dataset generation

Alternatively, datasets can be generated from scratch. The following procedure describes how to construct a dataset similar to the main base dataset (LTLbase):

First, generate a raw dataset by

python -m tgan_sr.data_generation.generator -od datasets/LTLbase --splits all_raw:1 --timeout 2 -nv 10 -ne 1600000 -ts 50 --log-each-x-percent 1 --frac-unsat None

(possibly rename to not override the supplied dataset). Enter the newly created directory.

Optional: Visualize the dataset (like Figures 5 and 6 in the paper)

python -m tgan_sr.utils.analyze_dataset all_raw.txt formula,sat

To filter the dataset for duplicates and balance classes per size

python -m tgan_sr.utils.update_dataset all_raw.txt unique - | python -m tgan_sr.utils.update_dataset - balance_per_size all_balanced.txt

Optional: Calculate relaxed satisfiability

python -m tgan_sr.utils.update_dataset all_balanced.txt relaxed_sat all_balanced_rs.txt

Optional: Visualize the dataset (like Figures 7 and 8 in the paper)

python -m tgan_sr.utils.analyze_dataset all_balanced_rs.txt formula,sat+relaxed

Split the data into training and validation sets

python -m tgan_sr.utils.update_dataset all_balanced_rs.txt shuffle+split=train:8,val:1,test:1

Experiments (training)

The folder configs contains JSON files for each type of experiment in the paper. Settings for different hyperparameters can be easily adjusted.

A model can be trained like this:

python -m tgan_sr.train.gan --run-name NAME --params-file configs/CONFIG.json

During training, relevant metrics will be logged to train_custom in the run's directory and can be viewed with tensorboard afterwards.

A list of all configurations and corresponding JSON files:

  • Standard WGAN: wgan_gp10_nl6-4_nc2_bs1024.json
  • Standard GAN: gan_nl6-4_nc2_bs1024.json
  • different σ for added noise: add parameter "gan_sigma_real" and assign desired value
  • WGAN on 10K-sized base dataset: n10k_wgan_gp10_nl6-4_nc2_bs512.json
  • Sample data from the trained WGAN: sample_n10k_wgan_gp10_nl6-4_nc2_bs512.json (ensure the "load_from" field matches your trained run name)
  • Classifier on default dataset: class_nl4_bs1024.json
  • Classifier on generated dataset: class_Generated_nl4_bs1024.json
  • WGAN with included classifier: wgan+class_nl6-3s1_nc2_bs1024.json
  • WGAN with absolute uncertainty objective: wgan+class+uncert-abs_nl6-3s1_nc2_bs1024.json (ensure the "looad_from" field matches your pre-trained name)
  • WGAN with entropy uncertainty objective: wgan+class+uncert-entr_nl6-3s1_nc2_bs1024.json (ensure the "looad_from" field matches your pre-trained name)
  • Sample data from the trained WGAN with entropy uncertainty objective: sample_wgan+class+uncert-entr_nl6-3s1_nc2_bs1024.json (ensure the "load_from" field matches your trained run name)

Evaluation

To test a trained classifier on an arbitrary dataset (validation):

python -m tgan_sr.train.gan --run-name NAME --test --ds-name DATASET_NAME

The model will be automatically loaded from the latest checkpoint in the run's directory.

How to Cite

@article{TGAN-SR,
    title = {Generating Symbolic Reasoning Problems with Transformer GANs},
    author = {Kreber, Jens U and Hahn, Christopher},
    journal = {arXiv preprint},
    year = {2021}
}
Owner
Reactive Systems Group
Saarland University
Reactive Systems Group
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI

FPSAutomaticAiming——基于YOLOV5的FPS类游戏自动瞄准AI 声明: 本项目仅限于学习交流,不可用于非法用途,包括但不限于:用于游戏外挂等,使用本项目产生的任何后果与本人无关! 简介 本项目基于yolov5,实现了一款FPS类游戏(CF、CSGO等)的自瞄AI,本项目旨在使用现

Fabian 246 Dec 28, 2022
Experiments with the Robust Binary Interval Search (RBIS) algorithm, a Query-Based prediction algorithm for the Online Search problem.

OnlineSearchRBIS Online Search with Best-Price and Query-Based Predictions This is the implementation of the Robust Binary Interval Search (RBIS) algo

S. K. 1 Apr 16, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
Advanced Signal Processing Notebooks and Tutorials

Advanced Digital Signal Processing Notebooks and Tutorials Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media

Guitars.AI 115 Dec 13, 2022
A trusty face recognition research platform developed by Tencent Youtu Lab

Introduction TFace: A trusty face recognition research platform developed by Tencent Youtu Lab. It provides a high-performance distributed training fr

Tencent 956 Jan 01, 2023
Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)

Gated-Attention Architectures for Task-Oriented Language Grounding This is a PyTorch implementation of the AAAI-18 paper: Gated-Attention Architecture

Devendra Chaplot 234 Nov 05, 2022
How to Leverage Multimodal EHR Data for Better Medical Predictions?

How to Leverage Multimodal EHR Data for Better Medical Predictions? This repository contains the code of the paper: How to Leverage Multimodal EHR Dat

13 Dec 13, 2022
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
Quantized models with python

quantized-network download .pth files to qmodels/: googlenet : https://download.

adreamxcj 2 Dec 28, 2021
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022
EssentialMC2 Video Understanding

EssentialMC2 Introduction EssentialMC2 is a complete system to solve video understanding tasks including MHRL(representation learning), MECR2( relatio

Alibaba 106 Dec 11, 2022
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
Official Repsoitory for "Mish: A Self Regularized Non-Monotonic Neural Activation Function" [BMVC 2020]

Mish: Self Regularized Non-Monotonic Activation Function BMVC 2020 (Official Paper) Notes: (Click to expand) A considerably faster version based on CU

Xa9aX ツ 1.2k Dec 29, 2022
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
MutualGuide is a compact object detector specially designed for embedded devices

Introduction MutualGuide is a compact object detector specially designed for embedded devices. Comparing to existing detectors, this repo contains two

ZHANG Heng 103 Dec 13, 2022
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022