Code2flow generates call graphs for dynamic programming language. Code2flow supports Python, Javascript, Ruby, and PHP.

Overview

code2flow logo

Version 2.2.0 Build passing Coverage 100% License MIT

Code2flow generates call graphs for dynamic programming language. Code2flow supports Python, Javascript, Ruby, and PHP.

The basic algorithm is simple:

  1. Translate your source files into ASTs.
  2. Find all function definitions.
  3. Determine where those functions are called.
  4. Connect the dots.

Code2flow is useful for:

  • Untangling spaghetti code.
  • Identifying orphaned functions.
  • Getting new developers up to speed.

Code2flow will provide a pretty good estimate of your project's structure. No algorithm can generate a perfect call graph for a dynamic language - even less so if that language is duck-typed. See the known limitations in the section below.

(Below: Code2flow running on itself (excl javascript, PHP, & Ruby for clarity))

code2flow running against itself

Installation

pip3 install code2flow

If you don't have it already, you will also need to install graphviz. Installation instructions can be found here.

Usage

To generate a DOT file run something like:

code2flow mypythonfile.py

Or, for javascript:

code2flow myjavascriptfile.js

You can also specify multiple files or import directories:

code2flow project/directory/source_a.js project/directory/source_b.js
code2flow project/directory/*.js
code2flow project/directory --language js

There are a ton of command line options, to see them all, run:

code2flow --help

How code2flow works

Code2flow approximates the structure of projects in dynamic languages. It is not possible to generate a perfect callgraph for a dynamic language.

Detailed algorithm:

  1. Generate an AST of the source code
  2. Recursively separate groups and nodes. Groups are files, modules, or classes. More precisely, groups are namespaces where functions live. Nodes are the functions themselves.
  3. For all nodes, identify function calls in those nodes.
  4. For all nodes, identify in-scope variables. Attempt to connect those variables to specific nodes and groups. This is where there is some ambiguity in the algorithm because it is possible to know the types of variables in dynamic languages. So, instead, heuristics must be used.
  5. For all calls in all nodes, attempt to find a match from the in-scope variables. This will be an edge.
  6. If a definitive match from in-scope variables cannot be found, attempt to find a single match from all other groups and nodes.
  7. Trim orphaned nodes and groups.
  8. Output results.

Why is it impossible to generate a perfect call graph?

Consider this toy example in Python

def func_factory(param):
    if param < .5:
        return func_a
    else:
        return func_b

func = func_factory(important_variable)
func()

We have no way of knowing whether func will point to func_a or func_b until runtime. In practice, ambiguity like this is common and is present in most non-trivial applications.

Known limitations

Code2flow is internally powered by ASTs. Most limitations stem from a token not being named what code2flow expects it to be named.

  • All functions without definitions are skipped. This most often happens when a file is not included.
  • Functions with identical names in different namespaces are (loudly) skipped. E.g. If you have two classes with identically named methods, code2flow cannot distinguish between these and skips them.
  • Imported functions from outside of your project directory (including from standard libraries) which share names with your defined functions may not be handled correctly. Instead when you call the imported function, code2flow will link to your local functions. E.g. if you have a function "search()" and call, "import searcher; searcher.search()", code2flow may link (incorrectly) to your defined function.
  • Anonymous or generated functions are skipped. This includes lambdas and factories.
  • If a function is renamed, either explicitly or by being passed around as a parameter, it will be skipped.

How to contribute

  1. Open an issue: Code2flow is not perfect and there is a lot that can be improved. If you find a problem parsing your source that you can identify with a simplified example, please open an issue.
  2. Create a PR: Even better, if you have a fix for the issue you identified that passes unit tests, please open a PR.
  3. Add a language: While dense, each language implementation is between 250-400 lines of code including comments. If you want to implement another language, the existing implementations can be your guide.

License

Code2flow is licensed under the MIT license. Prior to the rewrite in April 2021, code2flow was licensed under LGPL. The last commit under that license was 24b2cb854c6a872ba6e17409fbddb6659bf64d4c. The April 2021 rewrite was substantial so it's probably reasonable to treat code2flow as completely MIT-licensed.

Acknowledgements

  • In mid-2021, Code2flow was rewritten and two new languages were added. This was prompted and financially supported by the Sider Corporation.
  • The code2flow pip name was graciouly transferred to this project from Dheeraj Nair. He was using it for his own (unrelated) code2flow project.
  • Many others have contributed through bug fixes, cleanups, and identifying issues. Thank you!!!

Unrelated projects

The name, "code2flow", has been used for several unrelated projects. Specifically, the domain, code2flow.com, has no association with this project. I've never heard anything from them and it doesn't appear like they use anything from here.

Feedback / Contact

Please do email! [email protected]

Feature Requests

Email me. At any time, I'm spread thin across a lot of projects so I will, unfortunately, turn down most requests. However, I am open to paid development for compelling features.

Owner
Scott Rogowski
Author of Mongita, Code2Flow, and the FFER. Working on Fastmap - looking for cofounders.
Scott Rogowski
Full featured multi arch/os debugger built on top of PyQt5 and frida

Full featured multi arch/os debugger built on top of PyQt5 and frida

iGio90 1.1k Dec 26, 2022
Inject code into running Python processes

pyrasite Tools for injecting arbitrary code into running Python processes. homepage: http://pyrasite.com documentation: http://pyrasite.rtfd.org downl

Luke Macken 2.7k Jan 08, 2023
Never use print for debugging again

PySnooper - Never use print for debugging again PySnooper is a poor man's debugger. If you've used Bash, it's like set -x for Python, except it's fanc

Ram Rachum 15.5k Jan 01, 2023
Django package to log request values such as device, IP address, user CPU time, system CPU time, No of queries, SQL time, no of cache calls, missing, setting data cache calls for a particular URL with a basic UI.

django-web-profiler's documentation: Introduction: django-web-profiler is a django profiling tool which logs, stores debug toolbar statistics and also

MicroPyramid 77 Oct 29, 2022
Sentry is cross-platform application monitoring, with a focus on error reporting.

Users and logs provide clues. Sentry provides answers. What's Sentry? Sentry is a service that helps you monitor and fix crashes in realtime. The serv

Sentry 32.9k Dec 31, 2022
Dahua Console, access internal debug console and/or other researched functions in Dahua devices.

Dahua Console, access internal debug console and/or other researched functions in Dahua devices.

bashis 156 Dec 28, 2022
Debugger capable of attaching to and injecting code into python processes.

DISCLAIMER: This is not an official google project, this is just something I wrote while at Google. Pyringe What this is Pyringe is a python debugger

Google 1.6k Dec 15, 2022
Full-screen console debugger for Python

PuDB: a console-based visual debugger for Python Its goal is to provide all the niceties of modern GUI-based debuggers in a more lightweight and keybo

Andreas Klöckner 2.6k Jan 01, 2023
GDB plugin for streaming defmt messages over RTT from e.g. JLinkGDBServer

Defmt RTT plugin from GDB This small plugin runs defmt-print on the RTT stream produced by JLinkGDBServer, so that you can see the defmt logs in the G

Gaute Hope 1 Dec 30, 2021
Monitor Memory usage of Python code

Memory Profiler This is a python module for monitoring memory consumption of a process as well as line-by-line analysis of memory consumption for pyth

Fabian Pedregosa 80 Nov 18, 2022
An x86 old-debug-like program.

An x86 old-debug-like program.

Pablo Niklas 1 Jan 10, 2022
Silky smooth profiling for Django

Silk Silk is a live profiling and inspection tool for the Django framework. Silk intercepts and stores HTTP requests and database queries before prese

Jazzband 3.7k Jan 01, 2023
Trace all method entries and exits, the exit also prints the return value, if it is of basic type

Trace all method entries and exits, the exit also prints the return value, if it is of basic type. The apk must have set the android:debuggable="true" flag.

Kurt Nistelberger 7 Aug 10, 2022
pdb++, a drop-in replacement for pdb (the Python debugger)

pdb++, a drop-in replacement for pdb What is it? This module is an extension of the pdb module of the standard library. It is meant to be fully compat

1k Dec 24, 2022
Parsing ELF and DWARF in Python

pyelftools pyelftools is a pure-Python library for parsing and analyzing ELF files and DWARF debugging information. See the User's guide for more deta

Eli Bendersky 1.6k Jan 04, 2023
Python's missing debug print command and other development tools.

python devtools Python's missing debug print command and other development tools. For more information, see documentation. Install Just pip install de

Samuel Colvin 637 Jan 02, 2023
Integration of IPython pdb

IPython pdb Use ipdb exports functions to access the IPython debugger, which features tab completion, syntax highlighting, better tracebacks, better i

Godefroid Chapelle 1.7k Jan 07, 2023
A configurable set of panels that display various debug information about the current request/response.

Django Debug Toolbar The Django Debug Toolbar is a configurable set of panels that display various debug information about the current request/respons

Jazzband 7.3k Dec 31, 2022
The official code of LM-Debugger, an interactive tool for inspection and intervention in transformer-based language models.

LM-Debugger is an open-source interactive tool for inspection and intervention in transformer-based language models. This repository includes the code

Mor Geva 110 Dec 28, 2022
(OLD REPO) Line-by-line profiling for Python - Current repo ->

line_profiler and kernprof line_profiler is a module for doing line-by-line profiling of functions. kernprof is a convenient script for running either

Robert Kern 3.6k Jan 06, 2023