The tutorial is a collection of many other resources and my own notes

Overview
# TOC

Before reading
the tutorial is a collection of many other resources and my own notes. Note that the ref if any in the tutorial means the whole passage. And part to be referred if any means the part has been summarized or detailed by me. Feel free to click the [the part to be referred] to read the original.

CTC_pytorch

1. Why we need CTC? ---> looking back on history

Feel free to skip it if you already know the purpose of CTC coming into being.

1.1. About CRNN

We need to learn CRNN because in the context we need an output to be a sequence.

ref: the overview from CRNN to CTC !! highly recommended !!

part to be referred

multi-digit sequence recognition

  • Characted-based
  • word-based
  • sequence-to-sequence
  • CRNN = CNN + RNN
    • CNN --> relationship between pixel
    • (the small fonts) Specifially, each feature vec of a feature seq is generated from left to right on the feature maps. That means the i-th feature vec is the concatenation of the columns of all the maps. So the shape of the tensor can be reshaped as e.g. (batch_size, 32, 256)

image1



1.2. from Cross Entropy Loss to CTC Loss

Usually, CE is applied to compute loss as the following way. And gt(also target) can be encoded as a stable matrix or vector.

image2

However, in OCR or audio recognition, each target input/gt has various forms. e.g. "I like to play piano" can be unpredictable in handwriting.

image3

Some stroke is longer than expected. Others are short.
Assume that the above example is encoded as number sequence [5, 3, 8, 3, 0].

image4

  • Tips: blank(the blue box symbol here) is introduced because we allow the model to predict a blank label due to unsureness or the end comes, which is similar with human when we are not pretty sure to make a good prediction. ref:lihongyi lecture starting from 3:45

Therefore, we see that this is an one-to-many question where e.g. "I like to play piano" has many target forms. But we not just have one sequence. We might also have other sequence e.g. "I love you", "Not only you but also I like apple" etc, none of which have a same sentence length. And this is what cross entropy cannot achieve in one batch. But now we can encode all sequences/sentences into a new sequence with a max length of all sequences.

e.g.
"I love you" --> len = 10
"How are you" --> len = 11
"what's your name" --> len = 16

In this context the input_length should be >= 16.

For dealing with the expanded targets, CTC is introduced by using the ideas of (1) HMM forward algorithm and (2) dynamic programing.

2. Details about CTC

2.1. intuition: forward algorithm

image5

image6

Tips: the reason we have - inserted between each two token is because, for each moment/horizontal(Note) position we allow the model to predict a blank representing unsureness.

Note that moment is for audio recognition analogue. horizontal position is for OCR analogue.



2.2. implementation: forward algorithm with dynamic programming

the complete code is CTC.py

given 3 samples, they are
"orange" :[15, 18, 1, 14, 7, 5]    len = 6
"apple" :[1, 16, 16, 12, 5]    len = 5
"watermelon" :[[23, 1, 20, 5, 18, 13, 5, 12, 15, 14]  len = 10

{0:blank, 1:A, 2:B, ... 26:Z}

2.2.1. dummy input ---> what the input looks like

# ------------ a dummy input ----------------
log_probs = torch.randn(15, 3, 27).log_softmax(2).detach().requires_grad_()# 15:input_length  3:batchsize  27:num of token(class)
# targets = torch.randint(0, 27, (3, 10), dtype=torch.long)
targets = torch.tensor([[15, 18, 1,  14, 7, 5,  0, 0,  0,  0],
                        [1,  16, 16, 12, 5, 0,  0, 0,  0,  0],
                        [23, 1,  20, 5, 18, 13, 5, 12, 15, 14]]
                        )

# assume that the prediction vary within 15 input_length.But the target length is still the true length.
""" 
e.g. [a,0,0,0,p,0,p,p,p, ...l,e] is one of the prediction
 """
input_lengths = torch.full((3,), 15, dtype=torch.long)
target_lengths = torch.tensor([6,5,10], dtype = torch.long)



2.2.2. expand the target ---> what the target matrix look like

Recall that one target can be encoded in many different forms. So we introduce a targets mat to represent it as follows.

"-d-o-g-" ">
target_prime = targets.new_full((2 * target_length + 1,), blank) # create a targets_prime full of zero

target_prime[1::2] = targets[i, :target_length] # equivalent to insert blanks in targets. e.g. targets = "dog" --> "-d-o-g-"

Now we got target_prime(also expanded target) for e.g. "apple"
target_prime is
tensor([ 0, 1, 0, 16, 0, 16, 0, 12, 0, 5, 0]) which is visualized as the red part(also t1)

image7

Note that the t8 is only for illustration. In the example, the width of target matrix should be 15(input_length).

probs = log_probs[:input_length, i].exp()

Then we convert original inputs from log-space like this, referring to "In practice, the above recursion ..." in original paper https://www.cs.toronto.edu/~graves/icml_2006.pdf

2.3. Alpha Matrix

image8

# alpha matrix init at t1 indicated by purple boxes.
alpha_col = log_probs.new_zeros((target_length * 2 + 1,))
alpha_col[0] = probs[0, blank] # refers to green box
alpha_col[1] = probs[0, target_prime[1]]
  • blank is the index of blank(here it's 0)
  • target_prime[1] refers to the 1-st index of the token. e.g. "apple": "a", "orange": "o"

2.4. Dynamic programming based on 3 conditions

refer to the details in CTC.py

reference:

Owner
手写AI
手写AI
Tampilan - Change Termux Appearance With Python

Tampilan Gambar usage pkg update && pkg upgrade pkg install git && pkg install f

Creator Lord-Botz 1 Jan 31, 2022
Mkdocs obsidian publish - Publish your obsidian vault through a python script

Mkdocs Obsidian Mkdocs Obsidian is an association between a python script and a

Mara 49 Jan 09, 2023
A collection of lecture notes, drawings, flash cards, mind maps, scripts

Neuroanatomy A collection of lecture notes, drawings, flash cards, mind maps, scripts and other helpful resources for the course "Functional Organizat

Georg Reich 3 Sep 21, 2022
Swagger Documentation Generator for Django REST Framework: deprecated

Django REST Swagger: deprecated (2019-06-04) This project is no longer being maintained. Please consider drf-yasg as an alternative/successor. I haven

Marc Gibbons 2.6k Jan 03, 2023
Pydantic model generator for easy conversion of JSON, OpenAPI, JSON Schema, and YAML data sources.

datamodel-code-generator This code generator creates pydantic model from an openapi file and others. Help See documentation for more details. Supporte

Koudai Aono 1.3k Dec 29, 2022
Canonical source repository for PyYAML

PyYAML - The next generation YAML parser and emitter for Python. To install, type 'python setup.py install'. By default, the setup.py script checks

The YAML Project 2k Jan 01, 2023
Assignments from Launch X's python introduction course

Launch X - On Boarding Assignments from Launch X's Python Introduction Course Explore the docs » Report Bug · Request Feature Table of Contents About

Javier Méndez 0 Mar 15, 2022
YAML metadata extension for Python-Markdown

YAML metadata extension for Python-Markdown This extension adds YAML meta data handling to markdown with all YAML features. As in the original, metada

Nikita Sivakov 14 Dec 30, 2022
A comprehensive and FREE Online Python Development tutorial going step-by-step into the world of Python.

FREE Reverse Engineering Self-Study Course HERE Fundamental Python The book and code repo for the FREE Fundamental Python book by Kevin Thomas. FREE B

Kevin Thomas 7 Mar 19, 2022
Convert excel xlsx file's table to csv file, A GUI application on top of python/pyqt and other opensource softwares.

Convert excel xlsx file's table to csv file, A GUI application on top of python/pyqt and other opensource softwares.

David A 0 Jan 20, 2022
PyPresent - create slide presentations from notes

PyPresent Create slide presentations from notes Add some formatting to text file

1 Jan 06, 2022
A `:github:` role for Sphinx

sphinx-github-role A github role for Sphinx. Usage Basic usage MyST: :caption: index.md See {github}`astrojuanlu/sphinx-github-role#1`. reStructuredT

Juan Luis Cano Rodríguez 4 Nov 22, 2022
✨ Real-life Data Analysis and Model Training Workshop by Global AI Hub.

🎓 Data Analysis and Model Training Course by Global AI Hub Syllabus: Day 1 What is Data? Multimedia Structured and Unstructured Data Data Types Data

Global AI Hub 71 Oct 28, 2022
Fun interactive program to sort a list :)

LHD-Build-Sort-a-list Fun interactive program to sort a list :) Inspiration LHD Build Write a script to sort a list. What it does It is a menu driven

Ananya Gupta 1 Jan 15, 2022
Plover jyutping - Plover plugin for Jyutping input

Plover plugin for Jyutping Installation Navigate to the repo directory: cd plove

Samuel Lo 1 Mar 17, 2022
Gaphor is the simple modeling tool

Gaphor Gaphor is a UML and SysML modeling application written in Python. It is designed to be easy to use, while still being powerful. Gaphor implemen

Gaphor 1.3k Jan 03, 2023
A powerful Sphinx changelog-generating extension.

What is Releases? Releases is a Python (2.7, 3.4+) compatible Sphinx (1.8+) extension designed to help you keep a source control friendly, merge frien

Jeff Forcier 166 Dec 29, 2022
Explorative Data Analysis Guidelines

Explorative Data Analysis Get data into a usable format! Find out if the following predictive modeling phase will be successful! Combine everything in

Florian Rohrer 18 Dec 26, 2022
AiiDA plugin for the HyperQueue metascheduler.

aiida-hyperqueue WARNING: This plugin is still in heavy development. Expect bugs to pop up and the API to change. AiiDA plugin for the HyperQueue meta

AiiDA team 3 Jun 19, 2022
Make posters from Markdown files.

MkPosters Create posters using Markdown. Supports icons, admonitions, and LaTeX mathematics. At the moment it is restricted to the specific layout of

Patrick Kidger 243 Dec 20, 2022