Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Overview

Deep-rPPG: Camera-based pulse estimation using deep learning tools

Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools Source code of the master thesis titled "Camera-based pulse estimation using deep learning tools"

Implemented networks

DeepPhys

Chen, Weixuan, and Daniel McDuff. "Deepphys: Video-based physiological measurement using convolutional attention networks." Proceedings of the European Conference on Computer Vision (ECCV). 2018.

PhysNet

Yu, Zitong, Xiaobai Li, and Guoying Zhao. "Remote photoplethysmograph signal measurement from facial videos using spatio-temporal networks." Proc. BMVC. 2019.

NVIDIA Jetson Nano inference

The running speed of the networks are tested on NVIDIA Jetson Nano. Results and the installation steps of PyTorch and OpenCV are in the nano folder.

Abstract of the corresponding master thesis

titled "Camera-based pulse estimation using deep learning tools" (also uploaded in this repository)

Lately, it has been shown that an average color camera can detect the subtle color variations of the skin (caused by the cardiac cycle) – enabling us to monitor the pulse remotely in a non-contact manner with a camera. Since then, the field of remote photoplethysmography (rPPG) has been formed and advanced quickly in order the overcome its main limitations, namely: motion robustness and low signal quality. Most recently, deep learning (DL) methods have also appeared in the field – but applied only to adults so far. In this work, we utilize DL approaches for long-term, continuous premature infant monitoring in the Neonatal Intensive Care Unit (NICU).

The technology used in NICU for monitoring vital signs of infants has hardly changed in the past 30 years (i.e., ECG and pulse-oximetry). Even though these technologies have been of great importance for the reliable measurement of essential vital signs (like heart-rate, respiration-rate, and blood oxygenation), they also have considerable disadvantages – originating from their contact nature. The skin of premature infants is fragile, and contact sensors may cause discomfort, stress, pain, and even injuries – thus can harm the early development of the neonate. For the well-being of not exclusively newborns, but also every patient or subject who requires long-term monitoring (e.g., elders) or for whom contact sensors are not applicable (e.g., burn patients), it would be beneficial to replace contact-based technologies with non-contact alternatives without significantly sacrificing accuracy. Therefore, the topic of this study is camera-based (remote) pulse monitoring -- utilizing DL methods -- in the specific use-case of infant monitoring in the NICU.

First of all, as there is no publicly available infant database for rPPG purposes currently to our knowledge, it had to be collected for Deep Neural Network (DNN) training and evaluation. Video data from infants were collected in the $I$st Dept. of Neonatology of Pediatrics, Dept. of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary and a database was created for DNN training and evaluation with a total length of around 1 day.

Two state-of-the-art DNNs were implemented (and trained on our data) which were developed specifically for the task of pulse extraction from video, namely DeepPhys and PhysNet. Besides, two classical algorithms were implemented, namely POS and FVP, to be able to compare the two approaches: in our dataset DL methods outperform classical ones. A novel data augmentation technique is introduced for rPPG DNN training, namely frequency augmentation, which is essentially a temporal resampling of a video and corresponding label segment (while keeping the original camera sampling rate parameter unchanged) resulting in a modified pulse-rate. This method significantly improved the generalization capability of the DNNs.

In case of some external condition, the efficacy of remote sensing the vital signs are degraded (e.g., inadequate illumination, heavy subject motion, limited visible skin surface, etc.). In these situations, the prediction of the methods might be inaccurate or might give a completely wrong estimate blindly without warning -- which is undesirable, especially in medical applications. To solve this problem, the technique of Stochastic Neural Networks (SNNs) is proposed which yields a probability distribution over the whole output space instead of a single point estimate. In other words, SNNs associate a certainty/confidence/quality measure to their prediction, therefore we know how reliable an estimate is. In the spirit of this, a probabilistic neural network was designed for pulse-rate estimation, called RateProbEst, fused and trained together with PhysNet. This method has not been applied in this field before to our knowledge. Each method was evaluated and compared with each other on a large benchmark dataset.

Finally, the feasibility of rPPG DNN applications in a resource-limited environment is inspected on an NVIDIA Jetson Nano embedded system. The results demonstrate that the implemented DNNs are capable of (quasi) real-time inference even on limited hardware.

Cite as

Dániel Terbe. (2021, January 25). Camera-Based Pulse Monitoring Using Deep Learning Tools.

Special application on neonates

A custom YOLO network is used to crop the baby as a preprocessing step. This network was created based on this repo: https://github.com/eriklindernoren/PyTorch-YOLOv3

Our modified version: https://github.com/terbed/PyTorch-YOLOv3

Owner
Terbe Dániel
Terbe Dániel
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

49 Nov 23, 2022
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Algo Phantoms 81 Nov 26, 2022
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
Raptor-Multi-Tool - Raptor Multi Tool With Python

Promises 🔥 20 Stars and I'll fix every error that there is 50 Stars and we will

Aran 44 Jan 04, 2023
Behavioral "black-box" testing for recommender systems

RecList RecList Free software: MIT license Documentation: https://reclist.readthedocs.io. Overview RecList is an open source library providing behavio

Jacopo Tagliabue 375 Dec 30, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
PyTorch implementation of Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction (ICCV 2021).

Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction Introduction This is official PyTorch implementation of Towards Accurate Alignment

TANG Xiao 96 Dec 27, 2022
Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Neuron Merging: Compensating for Pruned Neurons Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference

Woojeong Kim 33 Dec 30, 2022
[Link]deep_portfolo - Use Reforcemet earg ad Supervsed learg to Optmze portfolo allocato []

rl_portfolio This Repository uses Reinforcement Learning and Supervised learning to Optimize portfolio allocation. The goal is to make profitable agen

Deepender Singla 165 Dec 02, 2022
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
Paddle implementation for "Highly Efficient Knowledge Graph Embedding Learning with Closed-Form Orthogonal Procrustes Analysis" (NAACL 2021)

ProcrustEs-KGE Paddle implementation for Highly Efficient Knowledge Graph Embedding Learning with Orthogonal Procrustes Analysis 🙈 A more detailed re

Lincedo Lab 4 Jun 09, 2021
An implementation of a sequence to sequence neural network using an encoder-decoder

Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a

Luke Tonin 195 Dec 17, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes.

Rotate-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes. Section I. Description The codes are

xinzelee 90 Dec 13, 2022
NOMAD - A blackbox optimization software

################################################################################### #

Blackbox Optimization 78 Dec 29, 2022
Cross-Document Coreference Resolution

Cross-Document Coreference Resolution This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in ou

Arie Cattan 29 Nov 28, 2022
Inteligência artificial criada para realizar interação social com idosos.

IA SONIA 4.0 A SONIA foi inspirada no assistente mais famoso do mundo e muito bem conhecido JARVIS. Todo mundo algum dia ja sonhou em ter o seu própri

Vinícius Azevedo 2 Oct 21, 2021
TreeSubstitutionCipher - Encryption system based on trees and substitution

Tree Substitution Cipher Generation Algorithm: Generate random tree. Tree nodes

stepa 1 Jan 08, 2022
A community run, 5-day PyTorch Deep Learning Bootcamp

Deep Learning Winter School, November 2107. Tel Aviv Deep Learning Bootcamp : http://deep-ml.com. About Tel-Aviv Deep Learning Bootcamp is an intensiv

Shlomo Kashani. 1.3k Sep 04, 2021
Learning to Reach Goals via Iterated Supervised Learning

Vanilla GCSL This repository contains a vanilla implementation of "Learning to Reach Goals via Iterated Supervised Learning" proposed by Dibya Gosh et

Christoph Heindl 4 Aug 10, 2022