Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

Overview

EAN: Event Adaptive Network

PWC

PyTorch Implementation of paper:

EAN: Event Adaptive Network for Enhanced Action Recognition

Yuan Tian, Yichao Yan, Xiongkuo Min, Guo Lu, Guangtao Zhai, Guodong Guo, and Zhiyong Gao

[ArXiv]

Main Contribution

Efficiently modeling spatial-temporal information in videos is crucial for action recognition. In this paper, we propose a unified action recognition framework to investigate the dynamic nature of video content by introducing the following designs. First, when extracting local cues, we generate the spatial-temporal kernels of dynamic-scale to adaptively fit the diverse events. Second, to accurately aggregate these cues into a global video representation, we propose to mine the interactions only among a few selected foreground objects by a Transformer, which yields a sparse paradigm. We call the proposed framework as Event Adaptive Network (EAN) because both key designs are adaptive to the input video content. To exploit the short-term motions within local segments, we propose a novel and efficient Latent Motion Code (LMC) module, further improving the performance of the framework.

Content

Dependencies

Please make sure the following libraries are installed successfully:

Data Preparation

Following the common practice, we need to first extract videos into frames for fast data loading. Please refer to TSN repo for the detailed guide of data pre-processing. We have successfully trained on Something-Something-V1 and V2, Kinetics, Diving48 datasets with this codebase. Basically, the processing of video data can be summarized into 3 steps:

  1. Extract frames from videos:

  2. Generate file lists needed for dataloader:

    • Each line of the list file will contain a tuple of (extracted video frame folder name, video frame number, and video groundtruth class). A list file looks like this:

      video_frame_folder 100 10
      video_2_frame_folder 150 31
      ...
      
    • Or you can use off-the-shelf tools provided by the repos: data_process/gen_label_xxx.py

  3. Edit dataset config information in datasets_video.py

Pretrained Models

Here, we provide the pretrained models of EAN models on Something-Something-V1 datasets. Recognizing actions in this dataset requires strong temporal modeling ability. EAN achieves state-of-the-art performance on these datasets. Notably, our method even surpasses optical flow based methods while with only RGB frames as input.

Something-Something-V1

Model Backbone FLOPs Val Top1 Val Top5 Checkpoints
EAN8F(RGB+LMC) ResNet-50 37G 53.4 81.1 [Jianguo Cloud]
EAN16(RGB+LMC) 74G 54.7 82.3
EAN16+8(RGB+LMC) 111G 57.2 83.9
EAN2 x (16+8)(RGB+LMC) 222G 57.5 84.3

Testing

For example, to test the EAN models on Something-Something-V1, you can first put the downloaded .pth.tar files into the "pretrained" folder and then run:

# test EAN model with 8frames clip
bash scripts/test/sthv1/RGB_LMC_8F.sh

# test EAN model with 16frames clip
bash scripts/test/sthv1/RGB_LMC_16F.sh

Training

We provided several scripts to train EAN with this repo, please refer to "scripts" folder for more details. For example, to train PAN on Something-Something-V1, you can run:

# train EAN model with 8frames clip
bash scripts/train/sthv1/RGB_LMC_8F.sh

Notice that you should scale up the learning rate with batch size. For example, if you use a batch size of 32 you should set learning rate to 0.005.

Other Info

References

This repository is built upon the following baseline implementations for the action recognition task.

Citation

Please [★star] this repo and [cite] the following arXiv paper if you feel our EAN useful to your research:

@misc{tian2021ean,
      title={EAN: Event Adaptive Network for Enhanced Action Recognition}, 
      author={Yuan Tian and Yichao Yan and Xiongkuo Min and Guo Lu and Guangtao Zhai and Guodong Guo and Zhiyong Gao},
      year={2021},
      eprint={2107.10771},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Contact

For any questions, please feel free to open an issue or contact:

Yuan Tian: [email protected]
Owner
TianYuan
TianYuan
Some experiments with tennis player aging curves using Hilbert space GPs in PyMC. Only experimental for now.

NOTE: This is still being developed! Setup notes This document uses Jeff Sackmann's tennis data. You can obtain it as follows: git clone https://githu

Martin Ingram 1 Jan 20, 2022
Semantic Scholar's Author Disambiguation Algorithm & Evaluation Suite

S2AND This repository provides access to the S2AND dataset and S2AND reference model described in the paper S2AND: A Benchmark and Evaluation System f

AI2 54 Nov 28, 2022
FluidNet re-written with ATen tensor lib

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,

JoliBrain 50 Jun 07, 2022
Implementation of E(n)-Transformer, which extends the ideas of Welling's E(n)-Equivariant Graph Neural Network to attention

E(n)-Equivariant Transformer (wip) Implementation of E(n)-Equivariant Transformer, which extends the ideas from Welling's E(n)-Equivariant G

Phil Wang 132 Jan 02, 2023
MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network

MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network This repository is the official implementation of MatchGAN: A S

Justin Sun 12 Dec 27, 2022
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
Koopman operator identification library in Python

pykoop pykoop is a Koopman operator identification library written in Python. It allows the user to specify Koopman lifting functions and regressors i

DECAR Systems Group 34 Jan 04, 2023
A tensorflow model that predicts if the image is of a cat or of a dog.

Quick intro Hello and thank you for your interest in my project! This is the backend part of a two-repo application. The other part can be found here

Tudor Matei 0 Mar 08, 2022
subpixel: A subpixel convnet for super resolution with Tensorflow

subpixel: A subpixel convolutional neural network implementation with Tensorflow Left: input images / Right: output images with 4x super-resolution af

Atrium LTS 2.1k Dec 23, 2022
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

TOQ-Nets-PyTorch-Release Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets). Temporal and Object Quantification Net

Zhezheng Luo 9 Jun 30, 2022
Parameterized Explainer for Graph Neural Network

PGExplainer This is a Tensorflow implementation of the paper: Parameterized Explainer for Graph Neural Network https://arxiv.org/abs/2011.04573 NeurIP

Dongsheng Luo 89 Dec 12, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Fateme Zamanian 30 Jan 06, 2023
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022
Streamlit App For Product Analysis - Streamlit App For Product Analysis

Streamlit_App_For_Product_Analysis Здравствуйте! Перед вами дашборд, позволяющий

Grigory Sirotkin 1 Jan 10, 2022
[ICCV2021] Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Xuanchi Ren 44 Dec 03, 2022
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022