Tensorflow implementation of soft-attention mechanism for video caption generation.

Overview

SA-tensorflow

Tensorflow implementation of soft-attention mechanism for video caption generation.

An example of soft-attention mechanism. The attention weight alpha indicates the temporal attention in one video based on each word.

[Yao et al. 2015 Describing Videos by Exploiting Temporal Structure] The original code implemented in Torch can be found here.

Prerequisites

  • Python 2.7
  • Tensorflow >= 0.7.1
  • NumPy
  • pandas
  • keras
  • java 1.8.0

Data

The MSVD [2] dataset can be download from here.

We pack the data into the format of HDF5, where each file is a mini-batch for training and has the following keys:

[u'data', u'fname', u'label', u'title']

batch['data'] stores the visual features. shape (n_step_lstm, batch_size, hidden_dim)

batch['fname'] stores the filenames(no extension) of videos. shape (batch_size)

batch['title'] stores the description. If there are multiple sentences correspond to one video, the other metadata such as visual features, filenames and labels have to duplicate for one-to-one mapping. shape (batch_size)

batch['label'] indicates where the video ends. For instance, [-1., -1., -1., -1., 0., -1., -1.] means that the video ends at index 4.

shape (n_step_lstm, batch_size)

Generate HDF5 data

We generate the HDF5 data by following the steps below. The codes are a little messy. If you have any questions, feel free to ask.

1. Generate Label

Once you change the video_path and output_path, you can generate labels by running the script:

python hdf5_generator/generate_nolabel.py

I set the length of each clip to 10 frames and the maximum length of frames to 450. You can change the parameters in function get_frame_list(frame_num).

2. Pack features together (no caption information)

Inputs:

label_path: The path for the labels generated earlier.

feature_path: The path that stores features such as VGG and C3D. You can change the directory name whatever you want.

Ouputs:

h5py_path: The path that you store the concatenation of different features, the code will automatically put the features in the subdirectory cont

python hdf5_generator/input_generator.py

Note that in function get_feats_depend_on_label(), you can choose whether to take the mean feature or random sample feature of frames in one clip. The random sample script is commented out since the performance is worse.

3. Add captions into HDF5 data

I set the maxmimum number of words in a caption to 35. feature folder is where our final output features store.

python hdf5_generator/trans_video_youtube.py

(The codes here are written by Kuo-Hao)

Generate data list

video_data_path_train = '$ROOTPATH/SA-tensorflow/examples/train_vn.txt'

You can change the path variable to the absolute path of your data. Then simply run python getlist.py to generate the list.

P.S. The filenames of HDF5 data start with train, val, test.

Usage

training

$ python Att.py --task train

testing

Test the model after a certain number of training epochs.

$ python Att.py --task test --net models/model-20

Author

Tseng-Hung Chen

Kuo-Hao Zeng

Disclaimer

We modified the code from this repository jazzsaxmafia/video_to_sequence to the temporal-attention model.

References

[1] L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle, and A. Courville. Describing videos by exploiting temporal structure. arXiv:1502.08029v4, 2015.

[2] chen:acl11, title = "Collecting Highly Parallel Data for Paraphrase Evaluation", author = "David L. Chen and William B. Dolan", booktitle = "Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics (ACL-2011)", address = "Portland, OR", month = "June", year = 2011

[3] Microsoft COCO Caption Evaluation

Owner
Paul Chen
Paul Chen
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Haotong Qin 59 Dec 17, 2022
Neural models of common sense. 🤖

Unicorn on Rainbow Neural models of common sense. This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a N

AI2 60 Jan 05, 2023
Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models (DDIM) Jiaming Song, Chenlin Meng and Stefano Ermon, Stanford Implements sampling from an implicit model that is t

465 Jan 05, 2023
Auto-Lama combines object detection and image inpainting to automate object removals

Auto-Lama Auto-Lama combines object detection and image inpainting to automate object removals. It is build on top of DE:TR from Facebook Research and

44 Dec 09, 2022
Target Propagation via Regularized Inversion

Target Propagation via Regularized Inversion The present code implements an ideal formulation of target propagation using regularized inverses compute

Vincent Roulet 0 Dec 02, 2021
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021) Official pytorch implementation of our paper: Discriminative

Beom 74 Dec 27, 2022
salabim - discrete event simulation in Python

Object oriented discrete event simulation and animation in Python. Includes process control features, resources, queues, monitors. statistical distrib

181 Dec 21, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Ajinkya Kulkarni 43 Nov 27, 2022
Apollo optimizer in tensorflow

Apollo Optimizer in Tensorflow 2.x Notes: Warmup is important with Apollo optimizer, so be sure to pass in a learning rate schedule vs. a constant lea

Evan Walters 1 Nov 09, 2021
Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series Forecasting.

Non-AR Spatial-Temporal Transformer Introduction Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series For

Chen Kai 66 Nov 28, 2022
This is an unofficial PyTorch implementation of Meta Pseudo Labels

This is an unofficial PyTorch implementation of Meta Pseudo Labels. The official Tensorflow implementation is here.

Jungdae Kim 320 Jan 08, 2023
Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021

IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos Introduction This repo is official PyTorch implementatio

Gyeongsik Moon 29 Sep 24, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
Deep Q-Learning Network in pytorch (not actively maintained)

pytoch-dqn This project is pytorch implementation of Human-level control through deep reinforcement learning and I also plan to implement the followin

Hung-Tu Chen 342 Jan 01, 2023
Attention mechanism with MNIST dataset

[TensorFlow] Attention mechanism with MNIST dataset Usage $ python run.py Result Training Loss graph. Test Each figure shows input digit, attention ma

YeongHyeon Park 12 Jun 10, 2022
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022