Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Overview

Score-Based Generative Modeling through Stochastic Differential Equations

This repo contains the official implementation for the paper Score-Based Generative Modeling through Stochastic Differential Equations

by Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole


We propose a unified framework that generalizes and improves previous work on score-based generative models through the lens of stochastic differential equations (SDEs). In particular, we can transform data to a simple noise distribution with a continuous-time stochastic process described by an SDE. This SDE can be reversed for sample generation if we know the score of the marginal distributions at each intermediate time step, which can be estimated with score matching. The basic idea is captured in the figure below:

schematic

Our work enables a better understanding of existing approaches, new sampling algorithms, exact likelihood computation, uniquely identifiable encoding, latent code manipulation, and brings new conditional generation abilities to the family of score-based generative models.

All combined, we achieved an FID of 2.20 and an Inception score of 9.89 for unconditional generation on CIFAR-10, as well as high-fidelity generation of 1024px Celeba-HQ images. In addition, we obtained a likelihood value of 2.99 bits/dim on uniformly dequantized CIFAR-10 images.

What does this code do?

Aside from the NCSN++ and DDPM++ models in our paper, this codebase also re-implements many previous score-based models all in one place, including NCSN from Generative Modeling by Estimating Gradients of the Data Distribution, NCSNv2 from Improved Techniques for Training Score-Based Generative Models, and DDPM from Denoising Diffusion Probabilistic Models.

It supports training new models, evaluating the sample quality and likelihoods of existing models. We carefully designed the code to be modular and easily extensible to new SDEs, predictors, or correctors.

How to run the code

Dependencies

Run the following to install a subset of necessary python packages for our code

pip install -r requirements.txt

Usage

Train and evaluate our models through main.py.

main.py:
  --config: Training configuration.
    (default: 'None')
  --eval_folder: The folder name for storing evaluation results
    (default: 'eval')
  --mode: <train|eval>: Running mode: train or eval
  --workdir: Working directory
  • config is the path to the config file. Our prescribed config files are provided in configs/. They are formatted according to ml_collections and should be quite self-explanatory.

  • workdir is the path that stores all artifacts of one experiment, like checkpoints, samples, and evaluation results.

  • eval_folder is the name of a subfolder in workdir that stores all artifacts of the evaluation process, like meta checkpoints for pre-emption prevention, image samples, and numpy dumps of quantitative results.

  • mode is either "train" or "eval". When set to "train", it starts the training of a new model, or resumes the training of an old model if its meta-checkpoints (for resuming running after pre-emption in a cloud environment) exist in workdir . When set to "eval", it can do an arbitrary combination of the following

    • Evaluate the loss function on the test / validation dataset.

    • Generate a fixed number of samples and compute its Inception score, FID, or KID.

    • Compute the log-likelihood on the training or test dataset.

    These functionalities can be configured through config files, or more conveniently, through the command-line support of the ml_collections package. For example, to generate samples and evaluate sample quality, supply the --config.eval.enable_sampling flag; to compute log-likelihoods, supply the --config.eval.enable_bpd flag, and specify --config.eval.dataset=train/test to indicate whether to compute the likelihoods on the training or test dataset.

How to extend the code

  • New SDEs: inherent the sde_lib.SDE abstract class and implement all abstract methods. The discretize() method is optional and the default is Euler-Maruyama discretization. Existing sampling methods and likelihood computation will automatically work for this new SDE.
  • New predictors: inherent the sampling.Predictor abstract class, implement the update_fn abstract method, and register its name with @register_predictor. The new predictor can be directly used in sampling.get_pc_sampler for Predictor-Corrector sampling, and all other controllable generation methods in controllable_generation.py.
  • New correctors: inherent the sampling.Corrector abstract class, implement the update_fn abstract method, and register its name with @register_corrector. The new corrector can be directly used in sampling.get_pc_sampler, and all other controllable generation methods in controllable_generation.py.

Pretrained checkpoints

Link: https://drive.google.com/drive/folders/10pQygNzF7hOOLwP3q8GiNxSnFRpArUxQ?usp=sharing

You may find two checkpoints for some models. The first checkpoint (with a smaller number) is the one that we reported FID scores in Table 3. The second checkpoint (with a larger number) is the one that we reported likelihood values and FIDs of black-box ODE samplers in Table 2. The former corresponds to the smallest FID during the course of training (every 50k iterations). The later is the last checkpoint during training.

Demonstrations and tutorials

  • Load our pretrained checkpoints and play with sampling, likelihood computation, and controllable synthesis

Open In Colab

  • Tutorial of score-based generative models in JAX + FLAX

Open In Colab

  • Tutorial of score-based generative models in PyTorch

Open In Colab

References

If you find the code useful for your research, please consider citing

@inproceedings{
  song2021scorebased,
  title={Score-Based Generative Modeling through Stochastic Differential Equations},
  author={Yang Song and Jascha Sohl-Dickstein and Diederik P Kingma and Abhishek Kumar and Stefano Ermon and Ben Poole},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=PxTIG12RRHS}
}

This work is built upon some previous papers which might also interest you:

  • Song, Yang, and Stefano Ermon. "Generative Modeling by Estimating Gradients of the Data Distribution." Proceedings of the 33rd Annual Conference on Neural Information Processing Systems. 2019.
  • Song, Yang, and Stefano Ermon. "Improved techniques for training score-based generative models." Proceedings of the 34th Annual Conference on Neural Information Processing Systems. 2020.
  • Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic models." Proceedings of the 34th Annual Conference on Neural Information Processing Systems. 2020.
Owner
Yang Song
PhD Candidate in Stanford AI Lab
Yang Song
TensorFlow Tutorials with YouTube Videos

TensorFlow Tutorials Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction These tutorials are intended for beginne

9.1k Jan 02, 2023
This is a repo of basic Machine Learning!

Basic Machine Learning This repository contains a topic-wise curated list of Machine Learning and Deep Learning tutorials, articles and other resource

Ekram Asif 53 Dec 31, 2022
Hypersearch weight debugging and losses tutorial

tutorial Activate tensorboard option Running TensorBoard remotely When working on a remote server, you can use SSH tunneling to forward the port of th

1 Dec 11, 2021
🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
Perform zero-order Hankel Transform for an 1D array (float or real valued).

perform zero-order Hankel Transform for an 1D array (float or real valued). An discrete form of Parseval theorem is guaranteed. Suit for iterative problems.

1 Jan 17, 2022
[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links This repo provides the model, code & data of our paper: LinkBERT: Pretraining

Michihiro Yasunaga 264 Jan 01, 2023
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023
Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Code Artifacts Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driv

Andrea Stocco 2 Aug 24, 2022
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics

FusionNet_Pytorch FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics Requirements Pytorch 0.1.11 Pyt

Choi Gunho 102 Dec 13, 2022
Deployment of PyTorch chatbot with Flask

Chatbot Deployment with Flask and JavaScript In this tutorial we deploy the chatbot I created in this tutorial with Flask and JavaScript. This gives 2

Patrick Loeber (Python Engineer) 107 Dec 29, 2022
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
Benchmark tools for Compressive LiDAR-to-map registration

Benchmark tools for Compressive LiDAR-to-map registration This repo contains the released version of code and datasets used for our IROS 2021 paper: "

Allie 9 Nov 24, 2022
Official repo for QHack—the quantum machine learning hackathon

Note: This repository has been frozen while we consider the submissions for the QHack Open Hackathon. We hope you enjoyed the event! Welcome to QHack,

Xanadu 118 Jan 05, 2023
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges for the practitioner

Sparse network learning with snlpy Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges

Andrew Stolman 1 Apr 30, 2021
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
[CVPR'22] Official PyTorch Implementation of Collaborative Transformers for Grounded Situation Recognition

[CVPR'22] Collaborative Transformers for Grounded Situation Recognition Paper | Model Checkpoint This is the official PyTorch implementation of Collab

Junhyeong Cho 29 Dec 10, 2022