NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking

Overview

pretrain4ir_tutorial

NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking

用作NLPIR实验室, Pre-training for IR方向入门.

代码包括了如下部分:

  • tasks/ : 生成预训练数据
  • pretrain/: 在生成的数据上Pre-training (MLM + NSP)
  • finetune/: Fine-tuning on MS MARCO

Preinstallation

First, prepare a Python3 environment, and run the following commands:

  git clone [email protected]:zhengyima/pretrain4ir_tutorial.git pretrain4ir_tutorial
  cd pretrain4ir_tutorial
  pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

Besides, you should download the BERT model checkpoint in format of huggingface transformers, and save them in a directory BERT_MODEL_PATH. In our paper, we use the version of bert-base-uncased. you can download it from the huggingface official model zoo, or Tsinghua mirror.

生成预训练数据

代码库提供了最简单易懂的预训练任务 rand。该任务随机从文档中选取1~5个词作为query, 用来demo面向IR的预训练。

生成rand预训练任务数据命令: cd tasks/rand && bash gen.sh

你可以自己编写脚本, 仿照rand任务, 生成你自己认为合理的预训练任务的数据。

Notes: 运行rand任务的shell之前, 你需要先将 gen.sh 脚本中的 msmarco_docs_path 参数改为MSMARCO数据集的 文档tsv 路径; 将bert_model参数改为下载好的bert模型目录;

模型预训练

代码库提供了模型预训练的相关代码, 见pretrain。该代码完成了MLM+NSP两个任务的预训练。

模型预训练命令: cd pretrain && bash train_bert.sh

Notes: 注意要修改train_bert中的相应参数:将bert_model参数改为下载好的bert模型目录; train_file改为你上一步生成好的预训练数据文件路径。

模型Fine-tune

代码库提供了在MSMARCO Document Ranking任务上进行Fine-tune的相关代码。见finetune。该代码完成了在MSMARCO上通过point-wise进行fine-tune的流程。

模型fine-tune命令: cd finetune && bash train_bert.sh

Leaderboard

Tasks [email protected] on dev set
PROP-MARCO 0.4201
PROP-WIKI 0.4188
BERT-Base 0.4184
rand 0.4123

Homework

设计一个你认为合理的预训练任务, 并对BERT模型进行预训练, 并在MSMARCO上完成fine-tune, 在Leaderboard上更新你在dev set上的结果。

你需要做的是:

  • 编写你自己的预训练数据生成脚本, 放到 tasks/yourtask 目录下。
  • 使用以上脚本, 生成自己的预训练数据。
  • 运行代码库提供的pre-train与fine-tune脚本, 跑出结果, 更新Leaderboard。

Links

Owner
ZYMa
Master candidate. IR and NLP.
ZYMa
Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer

MT5_paddle Use PaddlePaddle to reproduce the paper:mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer English | 简体中文 mT5: A Massively

2 Oct 17, 2021
Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology (EARIST)

🤖 Coeus - EARIST A.C.E 💬 Coeus is an Artificial Conversational Entity for queries in Eulogio "Amang" Rodriguez Institute of Science and Technology,

Dids Irwyn Reyes 3 Oct 14, 2022
Prithivida 690 Jan 04, 2023
Legal text retrieval for python

legal-text-retrieval Overview This system contains 2 steps: generate training data containing negative sample found by mixture score of cosine(tfidf)

Nguyễn Minh Phương 22 Dec 06, 2022
I can help you convert your images to pdf file.

IMAGE TO PDF CONVERTER BOT Configs TOKEN - Get bot token from @BotFather API_ID - From my.telegram.org API_HASH - From my.telegram.org Deploy to Herok

MADUSHANKA 10 Dec 14, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines

spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from t

Kenneth Enevoldsen 32 Dec 29, 2022
PG-19 Language Modelling Benchmark

PG-19 Language Modelling Benchmark This repository contains the PG-19 language modeling benchmark. It includes a set of books extracted from the Proje

DeepMind 161 Oct 30, 2022
Pytorch NLP library based on FastAI

Quick NLP Quick NLP is a deep learning nlp library inspired by the fast.ai library It follows the same api as fastai and extends it allowing for quick

Agis pof 283 Nov 21, 2022
Pangu-Alpha for Transformers

Pangu-Alpha for Transformers Usage Download MindSpore FP32 weights for GPU from here to data/Pangu-alpha_2.6B.ckpt Activate MindSpore environment and

One 5 Oct 01, 2022
Training code for Korean multi-class sentiment analysis

KoSentimentAnalysis Bert implementation for the Korean multi-class sentiment analysis 왜 한국어 감정 다중분류 모델은 거의 없는 것일까?에서 시작된 프로젝트 Environment: Pytorch, Da

Donghoon Shin 3 Dec 02, 2022
Russian GPT3 models.

Russian GPT-3 models (ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small) trained with 2048 sequence length with sparse and dense attention blocks. We also provide Russian GPT-2 large model (ruGPT2Larg

Sberbank AI 1.6k Jan 05, 2023
VampiresVsWerewolves - Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition

VampiresVsWerewolves Our Implementation of a MiniMax algorithm with alpha beta pruning in the context of an in-class competition. Our Algorithm finish

Shawn 1 Jan 21, 2022
Code for producing Japanese GPT-2 provided by rinna Co., Ltd.

japanese-gpt2 This repository provides the code for training Japanese GPT-2 models. This code has been used for producing japanese-gpt2-medium release

rinna Co.,Ltd. 491 Jan 07, 2023
Python3 to Crystal Translation using Python AST Walker

py2cr.py A code translator using AST from Python to Crystal. This is basically a NodeVisitor with Crystal output. See AST documentation (https://docs.

66 Jul 25, 2022
Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

Jan 2 Apr 20, 2022
Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings

Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings Trong bài viết này mình sẽ sử dụng pretrain model SimCS

Vo Van Phuc 18 Nov 25, 2022
EMNLP 2021 paper "Pre-train or Annotate? Domain Adaptation with a Constrained Budget".

Pre-train or Annotate? Domain Adaptation with a Constrained Budget This repo contains code and data associated with EMNLP 2021 paper "Pre-train or Ann

Fan Bai 8 Dec 17, 2021
ACL'22: Structured Pruning Learns Compact and Accurate Models

☕ CoFiPruning: Structured Pruning Learns Compact and Accurate Models This repository contains the code and pruned models for our ACL'22 paper Structur

Princeton Natural Language Processing 130 Jan 04, 2023