Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Overview

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Overview

  • Kalman Filter requires the true parameters of the model and solves optimal state estimation recursively. Expectation Maximization (EM) algorithm is applicable for estimating the parameters of the model that are not available before Kalman filtering, which is EM-KF algorithm.
  • To improve the preciseness of EM-KF algorithm, the author presents a state estimation method by combining the Long-Short Term Memory network (LSTM), Transformer and EM-KF algorithm in the framework of Encoder-Decoder in Sequence to Sequence (seq2seq).
  • Simulation on a linear mobile robot model demonstrates that the new method is more accurate.
  • Please read our paper on arXiv: Incorporating Transformer and LSTM to Kalman Filter with EM algorithm for state estimation, for understanding the details w.r.t. theoretical analysis and experiment in our method.

Usage

python main.py

Requirements

The code has been tested running under Python3, with package PyTorch, NumPy, Matplotlib, PyKalman and their dependencies installed.

Methodology

We proposed encoder-decoder framework in seq2seq for state estimation, that state estimation is equivalent to encode and decode observation.

  1. Previous works incorporating LSTM to KF, are adopting LSTM encoder and KF decoder. We proposed LSTM-KF adopting LSTM encoder and EM-KF decoder.
  2. Before EM-KF decoder, replace LSTM encoder by Transformer encoder, we call this Transformer-KF.
  3. Integrating Transformer and LSTM, we call this TL-KF.

Integrating Transformer and LSTM to encode observation before filtering, makes it easier for EM algorithm to estimate parameters.

Conclusions

  1. Combining Transformer and LSTM as an encoder-decoder framework for observation, can depict state more effectively, attenuate noise interference, and weaken the assumption of Markov property of states, and conditional independence of observations. This can enhance the preciseness and robustness of state estimation.
  2. Transformer, based on multi-head self attention and residual connection, can capture long-term dependency, while LSTM-encoder can model time-series. TL-KF, a combination of Transformer, LSTM and EM-KF, is precise for state estimation in systems with unknown parameters.
  3. Kalman smoother can ameliorate Kalman filter, but in TL-KF, filtering is precise enough. Therefore, after offline training for parameter estimation, KF for online estimation can be adopted.

Citation

@article{shi2021kalman,
    author={Zhuangwei Shi},
    title={Incorporating Transformer and LSTM to Kalman Filter with EM algorithm for state estimation},
    journal={arXiv preprint arXiv:2105.00250},
    year={2021},
}
Owner
zshicode
Look at the stars, look how they shine for you.
zshicode
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
Deep Sea Treasure Environment for Multi-Objective Optimization Research

DeepSeaTreasure Environment Installation In order to get started with this environment, you can install it using the following command: python3 -m pip

imec IDLab 6 Nov 14, 2022
Happywhale - Whale and Dolphin Identification Silver🥈 Solution (26/1588)

Kaggle-Happywhale Happywhale - Whale and Dolphin Identification Silver 🥈 Solution (26/1588) 竞赛方案思路 图像数据预处理-标志性特征图片裁剪:首先根据开源的标注数据训练YOLOv5x6目标检测模型,将训练集

Franxx 20 Nov 14, 2022
Unifying Global-Local Representations in Salient Object Detection with Transformer

GLSTR (Global-Local Saliency Transformer) This is the official implementation of paper "Unifying Global-Local Representations in Salient Object Detect

11 Aug 24, 2022
Pipeline for employing a Lightweight deep learning models for LOW-power systems

PL-LOW A high-performance deep learning model lightweight pipeline that gradually lightens deep neural networks in order to utilize high-performance d

POSTECH Data Intelligence Lab 9 Aug 13, 2022
Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Shuwa Gesture Toolkit is a framework that detects and classifies arbitrary gestures in short videos

Google 89 Dec 22, 2022
MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Update (20 Jan 2020): MODALS on text data is avialable MODALS MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space Table of Conte

38 Dec 15, 2022
PyTorch Implementation for "ForkGAN with SIngle Rainy NIght Images: Leveraging the RumiGAN to See into the Rainy Night"

ForkGAN with Single Rainy Night Images: Leveraging the RumiGAN to See into the Rainy Night By Seri Lee, Department of Engineering, Seoul National Univ

Seri Lee 52 Oct 12, 2022
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
Tutorial materials for Part of NSU Intro to Deep Learning with PyTorch.

Intro to Deep Learning Materials are part of North South University (NSU) Intro to Deep Learning with PyTorch workshop series. (Slides) Related materi

Hasib Zunair 9 Jun 08, 2022
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
DLWP: Deep Learning Weather Prediction

DLWP: Deep Learning Weather Prediction DLWP is a Python project containing data-

Kushal Shingote 3 Aug 14, 2022
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022
Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Chen Guo 58 Dec 24, 2022
Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Accompanying code for the paper Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Kevin Wilkinghoff 6 Dec 01, 2022
LBK 35 Dec 26, 2022
CharacterGAN: Few-Shot Keypoint Character Animation and Reposing

CharacterGAN Implementation of the paper "CharacterGAN: Few-Shot Keypoint Character Animation and Reposing" by Tobias Hinz, Matthew Fisher, Oliver Wan

Tobias Hinz 181 Dec 27, 2022
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Juanma Coria 187 Jan 06, 2023