当前位置:网站首页>Simple understanding of Precision, Recall, Accuracy, TP, TN, FP, FN
Simple understanding of Precision, Recall, Accuracy, TP, TN, FP, FN
2022-07-30 13:49:00 【xiongxyowo】
True Positive(TP),True Negative(TN),False Positive(FP),False Negative(FN)
these four words,The left half representsIs the prediction of the model correct?(分为True, False),The right half represents模型预测的结果(分为Positive, Negative).因此有:
- TP:The model predicted right ( T ) (T) (T),positive indeed ( P ) (P) (P),即所谓的"真阳性"
- TN:The model predicted right ( T ) (T) (T),indeed negative ( N ) (N) (N),即所谓的"真阴性"
- FP:模型预测错了 ( F ) (F) (F),predicted positive ( P ) (P) (P),So it's actually negative,即所谓的"假阳性"
- FN:模型预测错了 ( F ) (F) (F),预测为阴性 ( N ) (N) (N),So actually positive,即所谓的"假阴性"
精确率: All positive predictions given by the model ( P ) (P) (P)中,How much is actually true ( T P ) (TP) (TP),即: P r e c i s i o n = T P T P + F P Precision = \frac{TP}{TP+FP} Precision=TP+FPTP Precision is more focused on measuring whether the model's positive predictions are reliable(Can't kill by mistake).容易发现,假阳性FP越高,less accurate.
召回率: of all actual positive samples(TP+FN),How many were correctly discovered by the model(TP),即: R e c a l l = T P T P + F N Recall = \frac{TP}{TP+FN} Recall=TP+FNTP Recall is more focused on measuring whether actual positive samples are missed(can't miss).容易发现,假阴性FN越高,The lower the recall rate.
准确率: Model to predict the correct samples(T)占总样本的比例,即: A c c u r a c y = T P + T N T P + T N + F P + F N Accuracy = \frac{TP + TN}{TP+TN+FP+FN} Accuracy=TP+TN+FP+FNTP+TN Accuracy are often used to measure the comprehensive performance of a machine learning model.不过,Since the proportion of yin and yang samples in practical applications is likely to be unbalanced,Positive samples are generally rare,The model can achieve a high accuracy rate by simply predicting all samples as negative.为了解决这一问题,precision rates that focus more on the positivity itself,The two metrics of recall.
边栏推荐
猜你喜欢
随机推荐
Smart pointer implementation conjecture
R语言ggplot2可视化:使用ggpubr包的ggmaplot函数可视化MA图(MA-plot)、设置label.select参数自定义在图中显示标签的基因类型(自定义显示的标签列表)
SQL 改写系列七:谓词移动
正确处理页面控制器woopagecontroller.php,当提交表单时是否跳转正确的页面
C语言学习练习题:汉诺塔(函数与递归)
【ROS进阶篇】第十一讲 基于Gazebo和Rviz的机器人联合仿真(运动控制与传感器)
strlen跟sizeof区别
[ARC092D] Two Faced Edges
[VMware virtual machine installation mysql5.7 tutorial]
R语言向前或者向后移动时间序列数据(自定义滞后或者超前的期数):使用dplyr包中的lag函数将时间序列数据向后移动一天(设置参数n为负值)
人社部公布“数据库运行管理员”成新职业,OceanBase参与制定职业标准
【高等数学】【7】二重积分
odoo--qweb模板介绍(一)
树形dp小总结(换根,基环树,杂七杂八的dp)
shell script flow control statement
逻辑漏洞----权限类漏洞
电池包托盘有进水风险,存在安全隐患,紧急召回52928辆唐DM
pytorch学习记录(六):循环神经网络 RNN & LSTM
434. 字符串中的单词数
第十五天笔记