当前位置:网站首页>Simple understanding of Precision, Recall, Accuracy, TP, TN, FP, FN
Simple understanding of Precision, Recall, Accuracy, TP, TN, FP, FN
2022-07-30 13:49:00 【xiongxyowo】
True Positive(TP),True Negative(TN),False Positive(FP),False Negative(FN)
these four words,The left half representsIs the prediction of the model correct?(分为True, False),The right half represents模型预测的结果(分为Positive, Negative).因此有:
- TP:The model predicted right ( T ) (T) (T),positive indeed ( P ) (P) (P),即所谓的"真阳性"
- TN:The model predicted right ( T ) (T) (T),indeed negative ( N ) (N) (N),即所谓的"真阴性"
- FP:模型预测错了 ( F ) (F) (F),predicted positive ( P ) (P) (P),So it's actually negative,即所谓的"假阳性"
- FN:模型预测错了 ( F ) (F) (F),预测为阴性 ( N ) (N) (N),So actually positive,即所谓的"假阴性"
精确率: All positive predictions given by the model ( P ) (P) (P)中,How much is actually true ( T P ) (TP) (TP),即: P r e c i s i o n = T P T P + F P Precision = \frac{TP}{TP+FP} Precision=TP+FPTP Precision is more focused on measuring whether the model's positive predictions are reliable(Can't kill by mistake).容易发现,假阳性FP越高,less accurate.
召回率: of all actual positive samples(TP+FN),How many were correctly discovered by the model(TP),即: R e c a l l = T P T P + F N Recall = \frac{TP}{TP+FN} Recall=TP+FNTP Recall is more focused on measuring whether actual positive samples are missed(can't miss).容易发现,假阴性FN越高,The lower the recall rate.
准确率: Model to predict the correct samples(T)占总样本的比例,即: A c c u r a c y = T P + T N T P + T N + F P + F N Accuracy = \frac{TP + TN}{TP+TN+FP+FN} Accuracy=TP+TN+FP+FNTP+TN Accuracy are often used to measure the comprehensive performance of a machine learning model.不过,Since the proportion of yin and yang samples in practical applications is likely to be unbalanced,Positive samples are generally rare,The model can achieve a high accuracy rate by simply predicting all samples as negative.为了解决这一问题,precision rates that focus more on the positivity itself,The two metrics of recall.
边栏推荐
- (HR Interview) Most Common Interview Questions and Skilled Answers
- R语言筛选时间序列数据的子集(subset time series data)、使用window函数筛选连续日期时间范围内的数据(start参数和end参数分别指定起始和结束时间)
- 学习笔记——七周成为数据分析师《第二周:业务》:业务分析指标
- ENVI图像处理(6):NDVI和植被指数
- libudev manual
- [论文翻译] Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks
- 缓存
- 无代码开发平台应用可见权限设置入门教程
- 高性能数据访问中间件 OBProxy(三):问题排查和服务运维
- 戴墨镜的卡通太阳SVG动画js特效
猜你喜欢
随机推荐
学习笔记——七周成为数据分析师《第一周:数据分析思维》
自动化测试的生命周期是什么?
近两年激光雷达运动物体分割论文阅读小结
20220729 Securities, Finance
pytorch学习记录(五):卷积神经网络的实现
AT4108 [ARC094D] Normalization
简单理解精确率(Precision),召回率(Recall),准确率(Accuracy),TP,TN,FP,FN
strlen跟sizeof区别
ARC115F Migration
libudev manual
[ARC092D] Two Faced Edges
jsArray数组复制方法性能测试2207300040
IDEA 重复代码快速重构(抽取重复代码快捷键)
Hand tearing read-write lock performance test
【软考软件评测师】基于规则说明的测试技术上篇
R语言使用aov函数进行单因素协方差分析(One-way ANCOVA)、使用effects包中的effect函数来计算调整后的分组均值(calculate adjusted means)
el-table中el-table-column下的操作切换class样式
学习笔记——七周成为数据分析师《第二周:业务》:业务分析指标
永州动力电池实验室建设合理布局方案
CF1677E Tokitsukaze and Beautiful Subsegments