当前位置:网站首页>Simple understanding of Precision, Recall, Accuracy, TP, TN, FP, FN
Simple understanding of Precision, Recall, Accuracy, TP, TN, FP, FN
2022-07-30 13:49:00 【xiongxyowo】
True Positive(TP),True Negative(TN),False Positive(FP),False Negative(FN)
these four words,The left half representsIs the prediction of the model correct?(分为True, False),The right half represents模型预测的结果(分为Positive, Negative).因此有:
- TP:The model predicted right ( T ) (T) (T),positive indeed ( P ) (P) (P),即所谓的"真阳性"
- TN:The model predicted right ( T ) (T) (T),indeed negative ( N ) (N) (N),即所谓的"真阴性"
- FP:模型预测错了 ( F ) (F) (F),predicted positive ( P ) (P) (P),So it's actually negative,即所谓的"假阳性"
- FN:模型预测错了 ( F ) (F) (F),预测为阴性 ( N ) (N) (N),So actually positive,即所谓的"假阴性"
精确率: All positive predictions given by the model ( P ) (P) (P)中,How much is actually true ( T P ) (TP) (TP),即: P r e c i s i o n = T P T P + F P Precision = \frac{TP}{TP+FP} Precision=TP+FPTP Precision is more focused on measuring whether the model's positive predictions are reliable(Can't kill by mistake).容易发现,假阳性FP越高,less accurate.
召回率: of all actual positive samples(TP+FN),How many were correctly discovered by the model(TP),即: R e c a l l = T P T P + F N Recall = \frac{TP}{TP+FN} Recall=TP+FNTP Recall is more focused on measuring whether actual positive samples are missed(can't miss).容易发现,假阴性FN越高,The lower the recall rate.
准确率: Model to predict the correct samples(T)占总样本的比例,即: A c c u r a c y = T P + T N T P + T N + F P + F N Accuracy = \frac{TP + TN}{TP+TN+FP+FN} Accuracy=TP+TN+FP+FNTP+TN Accuracy are often used to measure the comprehensive performance of a machine learning model.不过,Since the proportion of yin and yang samples in practical applications is likely to be unbalanced,Positive samples are generally rare,The model can achieve a high accuracy rate by simply predicting all samples as negative.为了解决这一问题,precision rates that focus more on the positivity itself,The two metrics of recall.
边栏推荐
猜你喜欢

TaskDispatcher source code parsing

【高等数学】【7】二重积分

创意loadingjs特效小点跳跃动画

重保特辑|拦截99%恶意流量,揭秘WAF攻防演练最佳实践
SQL 26 calculation under 25 years of age or older and the number of users

缓存一致性

人社部公布“数据库运行管理员”成新职业,OceanBase参与制定职业标准

无代码开发平台应用可见权限设置入门教程

Classic test interview questions set - logical reasoning questions

一文读懂Elephant Swap,为何为ePLATO带来如此高的溢价?
随机推荐
学习笔记——七周成为数据分析师《第二周:业务》:业务分析指标
No-code development platform all application settings introductory tutorial
“封号斗罗” 程序员修炼之道:通向务实的最高境界
Mac Brew 安装PHP
LeetCode二叉树系列——116.填充每个节点的下一个右侧指针
CF603E Pastoral Oddities
人社部公布“数据库运行管理员”成新职业,OceanBase参与制定职业标准
R语言ggplot2可视化:使用ggpubr包的ggboxplot函数可视化分组箱图、使用ggpar函数改变图形化参数(xlab、ylab、改变可视化图像的坐标轴标签内容)
[PostgreSQL] - explain SQL analysis introduction
打破原则引入SQL,MongoDB到底想要干啥???
PyQt5快速开发与实战 8.6 设置样式
“12306” 的架构到底有多牛逼
Markdown 1 - 图文音视频等
What is the level of Ali P7?
自动化测试的生命周期是什么?
CF603E Pastoral Oddities
正确处理页面控制器woopagecontroller.php,当提交表单时是否跳转正确的页面
05 | login background: based on the password login mode (below)
12、 学习MySQL 排序
The way of programmers' cultivation: do one's own responsibilities, be clear in reality - lead to the highest realm of pragmatism