当前位置:网站首页>Diagonalization, power of a
Diagonalization, power of a
2022-07-25 18:18:00 【I don't know anything about Phuket】
One 、 Diagonalization of matrix and its conditions
1.2 Diagonalization of matrix
The square array A A A The eigenvector of is put into a new matrix S S S, So there are :
A S = A [ c 1 c 2 ⋯ c n ] = [ λ 1 c 1 ⋯ λ n c n ] = [ c 1 c 2 ⋯ c n ] [ λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ λ n ] = A Λ (1) \begin{aligned} AS&=A\begin{bmatrix}c_1&c_2&\cdots&c_n\end{bmatrix}\\&=\begin{bmatrix}\lambda_1c_1&\cdots&\lambda_nc_n\end{bmatrix}\\ &=\begin{bmatrix}c_1&c_2&\cdots& c_n\end{bmatrix}\begin{bmatrix}\lambda_1&0&\cdots&0\\0&\lambda_2&\cdots&0\\ \cdots&\cdots&\cdots&\cdots\\ \cdots&\cdots&\cdots&\lambda_n\end{bmatrix}=A\Lambda \end{aligned}\tag{1} AS=A[c1c2⋯cn]=[λ1c1⋯λncn]=[c1c2⋯cn]⎣⎡λ10⋯⋯0λ2⋯⋯⋯⋯⋯⋯00⋯λn⎦⎤=AΛ(1)
There is a :
A S = S Λ (2) AS=S\Lambda\tag{2} AS=SΛ(2)
Because eigenvectors are linearly independent , therefore :
S − 1 A S = Λ (3) S^{-1}AS=\Lambda\tag{3} S−1AS=Λ(3)
The following is the equivalent expression , That is the important formula of matrix diagonalization in our lesson :
A = S Λ S − 1 (4) A=S\Lambda S^{-1}\tag{4} A=SΛS−1(4)
This is another method of matrix decomposition : A matrix is divided into a matrix composed of eigenvalue vectors and a matrix composed of eigenvalues . Such decomposition , It makes it feasible for us to solve the power of the matrix .
from (3) There are the following conclusions :
A x = λ x A 2 x = λ A x = λ 2 x ⋯ A n x = λ n x (5) Ax=\lambda x\\ A^2x=\lambda Ax=\lambda^2x\\ \cdots\\ A^{n}x=\lambda^nx\tag{5} Ax=λxA2x=λAx=λ2x⋯Anx=λnx(5)
from (4) Yes :
A 2 = S Λ S − 1 S Λ S − 1 = S Λ 2 S − 1 A k = S Λ k S − 1 (6) A^2=S\Lambda S^{-1}S\Lambda S^{-1}=S\Lambda^2S^{-1}\\ A^k=S\Lambda^kS^{-1}\tag{6} A2=SΛS−1SΛS−1=SΛ2S−1Ak=SΛkS−1(6)
The existence of eigenvalues gives us an expression for calculating the power of a matrix , Be careful Matrix diagonalization condition yes : There is n n n Two independent eigenvectors .
Theorem : hypothesis A A A There is n n n Two independent eigenvectors , When k → ∞ k\rightarrow\infin k→∞, A k → 0 A^k\rightarrow0 Ak→0 Is the condition of :
∀ ∣ λ i ∣ < 1 (7) \forall \quad \vert\lambda_i\vert<1\tag{7} ∀∣λi∣<1(7)
Such a matrix A A A It is stable. .
Since there are so many good properties of diagonalization , So what kind of matrix can be diagonalized ? Here is the conclusion :
A A A There must be n n n Two independent vectors ( Or it can be diagonalized (diagnalizable)), If the following conditions are met :
- all λ \lambda λ Are different ( That is, there is no repetition λ \lambda λ, The textbook has proof )
Whether repeated eigenvalues must not be diagonalized ? answer : Look at the situation . The following is the two clock situation .
Example 1: Unit matrix I = [ 1 0 0 0 1 0 0 0 1 ] I=\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix} I=⎣⎡100010001⎦⎤, There are three eigenvalues , All are 1, But all vectors are their eigenvectors , Take whatever you like 3 Just one .
Example 2: For a triangular matrix A = [ 2 1 0 2 ] A=\begin{bmatrix}2&1\\0&2\end{bmatrix} A=[2012] The eigenvalue of is 2 and 2, Then find its eigenvector A − 2 I = [ 0 1 0 0 ] A-2I=\begin{bmatrix}0&1\\0&0\end{bmatrix} A−2I=[0010], The zero space of this matrix is a zero vector , The eigenvector is x 1 = [ 1 0 ] x_1=\begin{bmatrix}1\\0\end{bmatrix} x1=[10], Because I can't find 2 Linear independent vectors , No diagonalization .
Two 、 Application of diagonalization
If x i x_i xi yes A A A An eigenvector , that k x i kx_i kxi( k ≠ 0 k\neq 0 k=0) It's also its eigenvector .
A vector u 0 u_0 u0 It's a matrix A A A Eigenvector x i x_i xi The linear combination of :
u 0 = c 1 x 1 + c 2 x 2 + ⋯ + c n x n (8) u_0=c_1x_1+c_2x_2+\dots+c_nx_n\tag{8} u0=c1x1+c2x2+⋯+cnxn(8)
Matrix form :
u 0 = S c (9) u_0=Sc\tag{9} u0=Sc(9)
For everyone after u k u_k uk Through the general term :
u k + 1 = A u k (10) u_{k+1}=Au_k\tag{10} uk+1=Auk(10)
Find out , Concrete :
u 1 = A u 0 u 2 = A 2 u 0 ⋯ u k = A k u 0 (10) u_1=Au_0\\ u_2=A^2u_0\\ \cdots\\ u_k=A^ku_0\tag{10} u1=Au0u2=A2u0⋯uk=Aku0(10)
u 1 = A u 0 = c 1 λ 1 x 1 + c 2 λ 2 x 2 + ⋯ + c n λ n x n u 100 = A 100 u 0 = c 1 λ 1 100 x 1 + c 2 λ 2 100 x 2 + ⋯ + c n λ n 100 x n (11) u_1=Au_0=c_1\lambda_1x_1+c_2\lambda_2x_2+\cdots+c_n\lambda_nx_n\\ u_{100}=A^{100}u_0=c_1\lambda_1^{100}x_1+c_2\lambda_2^{100}x_2+\cdots+c_n\lambda_n^{100}x_n\tag{11} u1=Au0=c1λ1x1+c2λ2x2+⋯+cnλnxnu100=A100u0=c1λ1100x1+c2λ2100x2+⋯+cnλn100xn(11)
In matrix form :
u 0 = S c u 100 = u 0 A 100 = Λ 100 S c (12) u_0=Sc\\ u_{100}=u_0A^{100}=\Lambda^{100}Sc\tag{12} u0=Scu100=u0A100=Λ100Sc(12)
Here will be the initial vector u 0 u_0 u0 Expand into a linear combination of several eigenvectors , So we can deduce u 100 u_{100} u100 Result .
Fibonacci sequence (Fibonacci) Example :
0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 ⋯ F 100 0,1,1,2,3,5,8,13\cdots F_{100} 0,1,1,2,3,5,8,13⋯F100
How to put the first 100 How to calculate Fibonacci number and its growth rate ?
answer : Growth rate 、 The convergence 、 Stability is determined by eigenvalues , The recurrence formula is given below :
F k + 2 = F k + 1 + F k (13) F_{k+2}=F_{k+1}+F_k\tag{13} Fk+2=Fk+1+Fk(13)
This equation is not only related to the previous value F k F_k Fk of , And also with the value of the previous F k F_k Fk of , It is a second-order difference equation .(13) You can also add a condition :
F k + 2 = F k + 1 + F k F k + 1 = F k + 1 (14) F_{k+2}=F_{k+1}+F_k\\ F_{k+1}=F_{k+1} \tag{14} Fk+2=Fk+1+FkFk+1=Fk+1(14)
In matrix form :
[ F k + 2 F k + 1 ] = [ 1 1 1 0 ] [ F k + 1 F k ] \begin{bmatrix}F_{k+2}\\F_{k+1}\end{bmatrix}=\begin{bmatrix}1&1\\1&0\end{bmatrix}\begin{bmatrix}F_{k+1}\\F_k\end{bmatrix} [Fk+2Fk+1]=[1110][Fk+1Fk]
Here we use a little trick to transform the second-order equation “ drop ” Is a first-order equation :
u k = [ F k + 1 F k ] u k + 1 = [ u k + 2 u k + 1 ] (15) u_k=\begin{bmatrix}F_{k+1}\\F_k\end{bmatrix}\\ u_{k+1}=\begin{bmatrix}u_{k+2}\\u_{k+1}\end{bmatrix}\tag{15} uk=[Fk+1Fk]uk+1=[uk+2uk+1](15)
Plug in (14) Yes :
u k + 1 = [ 1 1 1 0 ] u k (16) u_{k+1}=\begin{bmatrix}1&1\\1&0\end{bmatrix}u_k\tag{16} uk+1=[1110]uk(16)
from : ∣ A − λ I ∣ = − λ 2 − λ + 1 = 0 \vert A-\lambda I\vert=-\lambda^2-\lambda+1=0 ∣A−λI∣=−λ2−λ+1=0 The eigenvalues can be obtained as :
λ 1 = 1 + 5 2 ≈ 1.618 λ 2 = 1 − 5 2 ≈ 0.618 (17) \lambda_1=\frac{1+\sqrt{5}}{2}\approx1.618\\ \lambda_2=\frac{1-\sqrt{5}}{2}\approx0.618\tag{17} λ1=21+5≈1.618λ2=21−5≈0.618(17)
The corresponding eigenvector is :
[ 1 − λ 1 1 − λ ] x = 0 (18) \begin{bmatrix}1-\lambda&1\\1&-\lambda\end{bmatrix}x=0\tag{18} [1−λ11−λ]x=0(18)
x = [ λ 1 ] x=\begin{bmatrix}\lambda\\1\end{bmatrix} x=[λ1] yes (18) Eigenvector of , This is because :
A x = [ − λ 2 − λ + 1 0 ] = [ 0 0 ] (19) Ax=\begin{bmatrix}-\lambda^2-\lambda+1\\0\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}\tag{19} Ax=[−λ2−λ+10]=[00](19)
This is because − λ 2 − λ + 1 = 0 -\lambda^2-\lambda+1=0 −λ2−λ+1=0 Exactly equal to the characteristic root equation .
x 1 = [ 1.618 1 ] x 2 = [ 0.618 1 ] (20) x_1=\begin{bmatrix}1.618\\1\end{bmatrix}\quad x_2=\begin{bmatrix}0.618\\1\end{bmatrix}\tag{20} x1=[1.6181]x2=[0.6181](20)
In order to take advantage of the previous conclusion , We need to set the initial value u 0 u_0 u0 use A A A Linear combination representation of eigenvectors of matrix , Suppose this linear combination is c 0 c_0 c0 and c 1 c_1 c1
u 0 = c 1 x 1 + c 0 x 2 (21) u_0=c_1x_1+c_0x_2\tag{21} u0=c1x1+c0x2(21)
It doesn't matter what the result is . Let's review the whole problem-solving logic :
- Convert the second-order difference equation into the first-order difference equation , The purpose is to apply the power characteristics of the first-order difference equation
- Determine that the obtained eigenvalues and eigenvectors can be used to represent u 0 u_0 u0
- If the second step exists , So there are u k = A 100 u 0 = c 1 λ 1 100 x 1 + c 2 λ 2 100 x 2 + ⋯ + c n λ n 100 x n u_k=A^{100}u_0=c_1\lambda_1^{100}x_1+c_2\lambda_2^{100}x_2+\cdots+c_n\lambda_n^{100}x_n uk=A100u0=c1λ1100x1+c2λ2100x2+⋯+cnλn100xn
Because this is only a second-order matrix , therefore :
u k = c 1 λ 1 100 x 1 + c 2 λ 2 100 x 2 (22) u_k=c_1\lambda_1^{100}x_1+c_2\lambda_2^{100}x_2\tag{22} uk=c1λ1100x1+c2λ2100x2(22)
For this example :
u 100 = c 1 ( 0.618 ) 100 + c 2 ( 1.618 ) 100 (23) u_{100}=c_1(0.618)^{100}+c_2(1.618)^{100}\tag{23} u100=c1(0.618)100+c2(1.618)100(23)
Simple analysis , As the order increases , The eigenvalue is less than 1 Of (0.618) The impact will be smaller and smaller , So the eigenvalue of the decisive factor is the larger one (1.618).
边栏推荐
- TESTNG中的并发测试invocationCount, threadPoolSize, timeOut的使用
- 「数字安全」警惕 NFT的七大骗局
- Introduction to cloud XR and development opportunities of cloud XR in 5g Era
- Li Kai: the interesting and cutting-edge audio and video industry has always attracted me
- NC68 跳台阶
- Optimistic lock pessimistic lock applicable scenario
- srec_ Use of common cat parameters
- PHP memory management mechanism and garbage collection mechanism
- 408 Chapter 2 linear table
- Cve-2022-33891 Apache spark shell command injection vulnerability recurrence
猜你喜欢

Related operations of binary tree

What is the relationship between cloud fluidization and cloud desktop

How to read a Book

STM8S003F3 内部flash调试

Cve-2022-33891 Apache spark shell command injection vulnerability recurrence

SQL那些事

ORB_SLAM3复现——上篇

LeetCode 101. 对称二叉树 && 100. 相同的树 && 572. 另一棵树的子树

实时云渲染有哪些优势

Could not stop Cortex-M device! please check the JTAG cable的解决办法
随机推荐
程序的编译
Bl602 development environment setup
云VR:虚拟现实专业化的下一步
SQL optimizer parsing | youth training camp notes
Recommend a qinheng Bluetooth reference blog
Which real-time gold trading platform is reliable and safe?
Hit the test site directly: summary of common agile knowledge points in PMP examination
Boomi won the "best CEO in diversity" and the "best company in career growth" and ranked among the top 50 in the large company category
Stm32f105rbt6 internal flash debugging
文件基础知识
Number two 2010 real test site
Related operations of binary tree
STM8S003F3 uart的使用
srec_cat 常用参数的使用
"Jargon" | what kind of experience is it to efficiently deliver games with Devops?
GAN的详细介绍及其应用(全面且完整)
Sequential storage structure, chain storage structure and implementation of stack
LeetCode 101. 对称二叉树 && 100. 相同的树 && 572. 另一棵树的子树
实时云渲染有哪些优势
Kendryte K210 在freertos上的lcd屏幕的使用