当前位置:网站首页>pytorch模型微调finetuning训练image_dog(kaggle)
pytorch模型微调finetuning训练image_dog(kaggle)
2022-07-31 05:16:00 【王大队长】
对kaggle上的比赛 狗的品种识别进行训练。



train文件夹有10222张狗的图片,test文件夹有10357张狗的图片,labels.csv文件放着train文件夹里的图片名称对应的label值。
模型:选择预训练的resnet50,冻住前面层的参数,将最后的全连接层改变使得输出类别变成120并对该层进行学习
代码:
import torch
import torchvision
from torch import nn
from torch.utils.data import Dataset
from PIL import Image
import os
from torchvision.transforms import transforms
import pandas as pd
from matplotlib import pyplot as plt
import numpy as np
import torch.optim as optim
from tqdm import tqdm #显示进度条的库
class dataset(Dataset): # 获取文件夹里的图片,并返回图片和label
def __init__(self, root_dir, imgs_labels, transform=None, valid_ratio=0.2, mode='train'):
self.imgName = os.listdir(root_dir)
self.data_len = len(self.imgName) - 1
self.imgs_labels = imgs_labels
self.transform = transform
self.root_dir = root_dir
self.mode = mode
self.train_len = int(self.data_len * (1 - valid_ratio))
if mode == 'train':
self.real_len = int(len(self.imgName) * (1 - valid_ratio))
elif mode == 'valid':
self.real_len = self.data_len - self.train_len
elif mode == 'test':
self.real_len = len(self.imgName)
print('Finished reading the {} set of Dataset ({} samples found)'
.format(mode, self.real_len))
def __getitem__(self, idx):
if self.mode == 'train':
self.imgtrainName = self.imgName[0:self.train_len]
self.real_len = len(self.imgtrainName)
img_item_path = os.path.join(self.root_dir, self.imgtrainName[idx])
img = Image.open(img_item_path).convert('RGB') # 转换成RGB形式的三通道图像
if self.transform is not None:
img = self.transform(img)
label = self.imgs_labels[self.imgtrainName[idx].split('.')[0]]
num_label = class_to_num[label]
return img, num_label
elif self.mode == 'valid':
self.imgvalidName = self.imgName[self.train_len:]
img_item_path = os.path.join(self.root_dir, self.imgvalidName[idx])
img = Image.open(img_item_path).convert('RGB') # 转换成RGB形式的三通道图像
if self.transform is not None:
img = self.transform(img)
label = self.imgs_labels[self.imgvalidName[idx].split('.')[0]]
num_label = class_to_num[label]
return img, num_label
elif self.mode == 'test':
img_item_path = os.path.join(self.root_dir, self.imgPath[idx])
img = Image.open(img_item_path).convert('RGB') # 转换成RGB形式的三通道图像
if self.transform is not None:
img = self.transform(img)
return img
def __len__(self):
return self.real_len
def get_net(device):
finetune_net = nn.Sequential()
finetune_net.features = torchvision.models.resnet50(pretrained=True)
finetune_net.output_new = nn.Sequential(nn.Linear(1000, 256),
nn.ReLU(),
nn.Linear(256, 120))
# 将模型参数分配给用于计算的CPU或GPU
finetune_net = finetune_net.to(device)
# 冻结参数
for param in finetune_net.features.parameters():
param.requires_grad = False
return finetune_net
def train(net, loss, optimizer, train_dataloader, device, batch_size):
# 训练开始
net.train()
train_acc = 0
# for imgs, targets in train_dataloader:
for batch in tqdm(train_dataloader, desc='训练'):
imgs, targets = batch
imgs = imgs.to(device)
targets = targets.to(device)
output = net(imgs)
Loss = loss(output, targets)
# 优化器优化模型
optimizer.zero_grad()
Loss.backward()
optimizer.step()
_, pred = output.max(1)
num_correct = (pred == targets).sum().item()
acc = num_correct / (batch_size)
train_acc += acc
print("epoch: {}, Loss: {}, Acc: {}".format(epoch, Loss.item(), train_acc / len(train_dataloader)))
train_acces.append(train_acc / len(train_dataloader))
train_losses.append(Loss.item())
return train_losses, train_acces
def valid(net, loss, valid_dataloader, device, batch_size):
net.eval()
eval_loss = 0
eval_acc = 0
with torch.no_grad():
# for imgs, targets in test_dataloader:
for batch in tqdm(valid_dataloader, desc='验证'):
imgs, targets = batch
imgs = imgs.to(device)
targets = targets.to(device)
output = net(imgs)
Loss = loss(output, targets)
_, pred = output.max(1)
num_correct = (pred == targets).sum().item()
eval_loss += Loss
acc = num_correct / (batch_size)
eval_acc += acc
eval_losses = eval_loss / (len(valid_dataloader))
eval_acc = eval_acc / (len(valid_dataloader))
eval_acces.append(eval_acc)
print("整体验证集上的Loss: {}".format(eval_losses))
print("整体验证集上的正确率: {}".format(eval_acc))
return eval_acces
def show_acces(train_losses, train_acces, valid_acces, num_epoch):#对准确率和loss画图显得直观
plt.plot(1 + np.arange(len(train_losses)), train_losses, linewidth=1.5, linestyle='dashed', label='train_losses')
plt.plot(1 + np.arange(len(train_acces)), train_acces, linewidth=1.5, linestyle='dashed', label='train_acces')
plt.plot(1 + np.arange(len(valid_acces)), valid_acces, linewidth=1.5, linestyle='dashed', label='valid_acces')
plt.grid()
plt.xlabel('epoch')
# plt.xlim((1,num_epoch))
plt.xticks(range(1, 1 + num_epoch, 1))
plt.legend()
plt.show()
if __name__ == '__main__':
train_path = r'/kaggle/input/dogbreedidentification/train/'
test_path = r'/kaggle/input/dogbreedidentification/test/'
imgs_train = os.listdir(train_path)
imgs_test = os.listdir(test_path)
print('训练集图片数:', len(imgs_train))
print('验证集图片数:', len(imgs_test))
data_info = pd.read_csv(r'/kaggle/input/dogbreedidentification/labels.csv')
# print(data_info.sample(10))
imgs = data_info.iloc[0:, 0]
labels = data_info.iloc[0:, 1]
imgs_labels = dict(zip(imgs, labels))
train_root_dir = train_path
test_root_dir = test_path
labels = imgs_labels
# 独热编码
labels_sorted = sorted(list(set(data_info['breed'])))
n_classes = len(labels_sorted)
class_to_num = dict(zip(labels_sorted, range(n_classes)))
print('len:', len(labels_sorted))
num_to_class = {v: k for k, v in class_to_num.items()}
# config
batchsize = 64
num_epoch = 5
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net = get_net(device)
net.to(device)
loss = nn.CrossEntropyLoss()
optimizer = optim.Adam([{'params': net.output_new.parameters()}], lr=0.001)
train_losses = []
train_acces = []
eval_acces = []
transform = {"train": transforms.Compose([
# 随机裁剪图像,所得图像为原始面积的0.08到1之间,高宽比在3/4和4/3之间。
# 然后,缩放图像以创建224x224的新图像
transforms.RandomResizedCrop(224, scale=(0.08, 1.0),
ratio=(3.0 / 4.0, 4.0 / 3.0)),
transforms.RandomHorizontalFlip(),
# 随机更改亮度,对比度和饱和度
transforms.ColorJitter(brightness=0.4,
contrast=0.4,
saturation=0.4),
# 添加随机噪声
transforms.ToTensor(),
# 标准化图像的每个通道
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])]),
"valid": transforms.Compose([
torchvision.transforms.Resize(256),
# 从图像中心裁切224x224大小的图片
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])}
train_dataset = dataset(train_root_dir, imgs_labels, transform=transform["train"], valid_ratio=0.1, mode='train')
valid_dataset = dataset(train_root_dir, imgs_labels, transform=transform["valid"], valid_ratio=0.1, mode='valid')
test_dataset = dataset(test_root_dir, imgs_labels, transform=transform_train, mode='test')
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batchsize, shuffle=True)
valid_dataloader = torch.utils.data.DataLoader(valid_dataset, batch_size=int(batchsize / 2), shuffle=True)
test_dataloader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
#放几张样本图片看看
examples = enumerate(train_dataloader) # 组合成一个索引序列
batch_idx, (example_data, example_targets) = next(examples)
fig = plt.figure()
for i in range(6):
plt.subplot(2, 3, i + 1)
# plt.tight_layout()
img = example_data[i]
img = np.asarray(img)
plt.imshow(img.transpose((1, 2, 0)))
plt.title(num_to_class[int(example_targets[i])])
plt.xticks([])
plt.yticks([])
plt.show()
print("参数数:{}".format(sum(x.numel() for x in net.parameters())))
for epoch in range(num_epoch):
print("——————第 {} 轮训练开始——————".format(epoch + 1))
train_losses, train_acces = train(net, loss, optimizer, train_dataloader, device, batchsize)
valid_acces = valid(net, loss, valid_dataloader, device, batchsize / 2)
show_acces(train_losses, train_acces, valid_acces, num_epoch)结果:

编辑
添加图片注释,不超过 140 字(可选)

编辑
添加图片注释,不超过 140 字(可选)
5个epoch使验证集上准确率0.83,不过2到3个epoch就已经收敛了(可能是这就是微调的吧,冻住了其他参数,就学习了最后的Linear层所以参数不多)。
边栏推荐
- quick-3.5 无法正常显示有混合纹理的csb文件
- Take you to understand the MySQL isolation level, what happens when two transactions operate on the same row of data at the same time?
- [Cloud Native] What should I do if SQL (and stored procedures) run too slowly?
- cv2.imread()
- break and continue exit in js
- ERROR Error: No module factory availabl at Object.PROJECT_CONFIG_JSON_NOT_VALID_OR_NOT_EXIST ‘Error
- VS connects to MYSQL through ODBC (1)
- VTK:Could not locate vtkTextRenderer object.
- cocoscreator 显示刘海内容
- js中的this指向与原型对象
猜你喜欢

For penetration testing methods where the output point is a timestamp (take Oracle database as an example)

jenkins +miniprogram-ci 一键上传微信小程序

Pytorch实现ResNet

Principle analysis of famous website msdn.itellyou.cn

cv2.imread()

Navicat从本地文件中导入sql文件

js中的this指向与原型对象

js中的对象与函数的理解

2021美赛C题M奖思路

UiBot has an open Microsoft Edge browser and cannot perform the installation
随机推荐
YOLOX中的SimOTA
jenkins +miniprogram-ci upload WeChat applet with one click
This in js points to the prototype object
A simple bash to powershell case
quick lua加密
VS connects to MYSQL through ODBC (2)
The browser looks for events bound or listened to by js
Flutter mixed development module dependencies
Judgment of database in SQL injection
sql 添加 default 约束
flutter arr dependencies
浅谈对分布式模式下CAP的理解
cv2.imread()
腾讯云轻量服务器删除所有防火墙规则
VS2017连接MYSQL
数据库 | SQL查询进阶语法
MySQL compressed package installation, fool teaching
DC-CDN学习笔记
一文速学-玩转MySQL获取时间、格式转换各类操作方法详解
RuntimeError: CUDA error: no kernel image is available for execution on the device问题记录