当前位置:网站首页>2DCNN, 1DCNN, BP, SVM fault diagnosis and result visualization of matlab
2DCNN, 1DCNN, BP, SVM fault diagnosis and result visualization of matlab
2022-08-04 07:02:00 【Doraemon 001】
0、前言
This paper aims at ten kinds of bearing fault diagnosis problems,Four classical methods are used2DCNN、1DCNN、BP、SVM进行建模,and compare the final results.
1、理论介绍
BP和SVMThe theory is no longer described.1DCNNRefers to the use of one-dimensional convolution,2DCNNtwo-dimensional convolution,For related theories, please refer to the paper《A two-dimensional convolutional neural network optimization method for bearing fault diagnosis》.This paper proposes a new data preprocessing method,将原始time domain signal data转换成2D grayscale imageto extract the transformed image features,Eliminate the effects of handcrafted features;同时,Added noise reduction processing to the experimentally collected fault dataset before validating the classification,Parameter adaptive learning rate optimization is carried out for the gradient descent algorithm of convolutional neural network.所提2DCNNThe method achieved good results,A new way of thinking is provided for fault diagnosis.

2、方法对比

2.1 BP建模结果



2.2 SVM建模结果

2.3 1DCNN建模结果



2.4 2DCNN建模结果



2.5 Comparison of test classification results

3、Feature visualization and comparative analysis
3.1 BPHidden layer feature visualization


3.2 SVM特征可视化(PCAThe feature visualization of the sample in the kernel space after dimensionality reduction)


3.3 1DCNNHidden layer feature visualization


3.4 2DCNNHidden layer feature visualization


4、结果分析
上述BP与SVM效果不太理想,This is because the input of these two methods is raw signal data,The shallow model has limited processing effect on the original signal data.CNNDeep models can automatically learn abstract representations of raw data,This avoids handcrafted features designed by engineers,And compared with traditional machine learning methods, good results have been achieved.The most common data type is the time domain signal,Various deep learning methods for processing one-dimensional signals have been applied in real-time motor fault diagnosis.But they are all one-dimensional time series signals,Feature extraction is prone to feature loss,However, the current mainstream two-dimensional convolutional neural network structure is not directly applicable to one-dimensional vibration signals,As a result, it is necessary to deepen the depth of the commonly used one-dimensional convolutional neural network to obtain a larger receptive field,从而抑制过拟合,This increases the difficulty of design to a certain extent.This paper refers to the data preprocessing method proposed in the above paper,Convert the raw time-domain signal data into a two-dimensional grayscale image,There are no predefined parameters,This eliminates expert experience as much as possible,And can use convolutional neural network widely used in image recognition(2DCNN).
Inspired by the paper,将原始1Convert dimensional signal data to 2D data(即图像)就可以采用Image recognition is widely used in convolutional neural networks(2DCNN),The conversion method is not limited to the two-dimensional grayscale image proposed in the paper,Raw signal data can also be passed through小波变换、EEMD变换、VMD变换Obtained by isochronous frequency domain analysis method时频图(二维图像),然后采用2DCNN对时频图进行训练,实现分类(或预测).
边栏推荐
- Treating as key frame since WebRTC-SpsPpsIdrIsH264Keyframe is disabled 解决
- 【HIT-SC-LAB2】哈工大2022软件构造 实验2
- MATLAB 的ICEEMDAN分解代码实现
- 树莓派 4 B 拨动开关控制风扇 Rasberry Pi 4 B Add Toggle Switch for the Fan
- 狗都能看懂的变化检测网络Siam-NestedUNet讲解——解决工业检测的痛点
- C# 剪裁图片内容区域
- 数据库技巧:整理SQLServer非常实用的脚本
- Unity Day03
- 怎样才能转行成功?
- 硬件描述语言Verilog HDL学习笔记之模块介绍
猜你喜欢

gRPC intro 1:RPC

华硕飞行堡垒系列无线网经常显示“无法连接网络” || 一打开游戏就断网

怎样才能转行成功?

如何在Excel 里倒序排列表格数据 || csv表格倒序排列数据

sql常用函数

Memory limit should be smaller than already set memoryswap limit, update the memoryswap at the same

CMDB 腾讯云部分实现

FCN——语义分割的开山鼻祖(基于tf-Kersa复现代码)

Scheduler (Long-term,Short-term, Medium-term Scheduler) & Dispatcher

杰哥带大家做一次meterpreter内网渗透模拟
随机推荐
Uos统信系统 DISK(RAID+LVM)
通过socks5代理下载webrtc源码错误:curl: (7) Can't complete SOCKS5 connection xx.xx.xx.xx
以太网 ARP
Microsoft Store 微软应用商店无法连接网络,错误代码:0x80131500
QT 出现多冲定义问题
JUC锁框架——初识AQS
并发概念基础:并发、同步、阻塞
基于Event Stream操作JSON
ZYNQ之FPGA LED 灯闪烁实验
clssloader与双亲委派
ResNet详解:ResNet到底在解决什么问题?
JUC锁框架——基于AQS的实现,从ReentrantLock认识独占和共享
IE8 打开速度慢的解决办法
并发概念基础:线程,死锁
EL expression
华为鲲鹏arm服务器下使用webrtc和boost踩坑记--编译篇
EfficientNet解读:神经网络的复合缩放方法(基于tf-Kersa复现代码)
电脑软件:推荐一款磁盘空间分析工具——WizTree
并发概念基础:线程安全与线程间通信
C#找系统文件夹路径