当前位置:网站首页>【图像融合】基于耦合特征学习的多模式医学图像融合附matlab代码
【图像融合】基于耦合特征学习的多模式医学图像融合附matlab代码
2022-06-26 06:43:00 【Matlab科研工作室】
1 简介
Multimodal image fusion aims to combine relevant information from images acquired with different sensors. In medical imaging, fused images play an essential role in both standard and automated diagnosis. In this paper, we propose a novel multimodal image fusion method based on coupled dictionary learning. The proposed method is general and can be employed for different medical imaging modalities. Unlike many current medical fusion methods, the proposed approach does not suffer from intensity attenuation nor loss of critical information. Specifically, the images to be fused are decomposed into coupled and independent components estimated using sparse representations with identical supports and a Pearson correlation constraint, respectively. An alternating minimization algorithm is designed to solve the resulting optimization problem. The final fusion step uses the max-absolute-value rule. Experiments are conducted using various pairs of multimodal inputs, including real MR-CT and MR-PET images. The resulting performance and execution times show the competitiveness of the proposed method in comparison with state-of-the-art medical image fusion methods.
2 部分代码
%%% color-greyscale mutimodal image fusion (functional-anatomical)clear% clcaddpath('utilities');%% fusion problem% fusion_mods = 'T2-PET';% fusion_mods = 'T2-TC';fusion_mods = 'T2-TI';% fusion_mods = 'Gad-PET';%% parametersopts.k = 5; % maximum nnonzero entries in sparse vectorsopts.rho = 10; % optimization penalty termopts.plot = false; % plot decomposition components%% loading input imagesI1rgb = double(imread(['Source_Images\' fusion_mods '_A.png']))/255;I1ycbcr = rgb2ycbcr(I1rgb);I1 = I1ycbcr(:,:,1);I2 = double(imread(['Source_Images\' fusion_mods '_B.png']))/255;if size(I2,3)>1, I2 = rgb2gray(I2); end%% performing decomposition and fusionn = 32; b = 8;D0 = DCT(n,b); % initializing the dictionaries with DCT matricestic;[~,~,Ie1,Ie2,D1,D2,A1,A2] = perform_Corr_Ind_Decomp(I1,I2,D0,D0,opts); % Decomposition[IF, IF_int] = Fuse_color(Ie2,Ie1,D2,D1,A2,A1,I1ycbcr); % Fusiontoc; % runtime%% resultsF = uint8(IF*255);imwrite(F,['Results\' fusion_mods '_F.png']);figure(23)subplot 131imshow(I1rgb,[])xlabel('I_1')subplot 132imshow(I2,[])xlabel('I_2')subplot 133imshow(IF,[])xlabel('I^F')%% dictionary atoms% ID1 = displayPatches(D1);% ID2 = displayPatches(D2);%% figure(37)% subplot 121% imshow(ID1)% xlabel('D1')% subplot 122% imshow(ID2)% xlabel('D2')
3 仿真结果


4 参考文献
[1] Veshki F G , Ouzir N , Vorobyov S A , et al. Coupled Feature Learning for Multimodal Medical Image Fusion[J]. 2021.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。
边栏推荐
- 营销技巧:相比较讲产品的优点,更有效的是要向客户展示使用效果
- How to make the main thread wait for the sub thread to execute before executing
- 直播预告丨消防安全讲师培训“云课堂”即将开讲!
- How to transfer database data to check box
- 宝塔服务器搭建及数据库远程连接
- Unsatisfied dependency expressed through field ‘baseMapper‘; nested exceptio
- Screen sharing recommendations
- I use flask to write the website "II"
- Research Report on market supply and demand and strategy of Chinese amyl cinnamaldehyde (ACA) industry
- Reasons why MySQL indexes are not effective
猜你喜欢

Pagoda server setup and database remote connection
![[digital signal processing] basic sequence (basic sequence lists | unit pulse sequence | unit pulse function | discrete unit pulse function | difference between unit pulse function and discrete unit p](/img/bf/16ea6e1283adda928f62c6f416b254.jpg)
[digital signal processing] basic sequence (basic sequence lists | unit pulse sequence | unit pulse function | discrete unit pulse function | difference between unit pulse function and discrete unit p

Reasons why MySQL indexes are not effective

在公司逮到一个阿里10年的测试开发,聊过之后大彻大悟...
New generation engineers teach you how to play with alluxio + ml (Part 1)

Dpdk - tcp/udp protocol stack server implementation (II)

Zotero文献管理工具之Jasminum(茉莉花)插件

Container with the most water

What is data mining?

Connexion et déconnexion TCP, détails du diagramme de migration de l'état
随机推荐
How can an enterprise successfully complete cloud migration?
TS泛型在函数、接口、类中使用介绍
Dpdk - tcp/udp protocol stack server implementation (I)
Closure problem C Lua
SecureCRT运行SparkShell 删除键出现乱码的解法
Spark3.3.0源码编译补充篇-抓狂的证书问题
Alarm operation and Maintenance Center | build an efficient and accurate alarm collaborative processing system
在公司逮到一个阿里10年的测试开发,聊过之后大彻大悟...
Past events of Xinhua III
遇到女司机业余开滴滴,日入500!
JS download pictures
The sysdig 2022 cloud native security and usage report found that more than 75% of the running containers have serious vulnerabilities
zip(*arg)的用法
Lightgbm-- parameter adjustment notes
Solution of garbled code in sparkshell deletion key of SecureCRT
Bugku练习题---MISC---富强民主
Typescript type
Installation and login of MySQL database
Simple use of typescript's class interface
typescript的type