当前位置:网站首页>[digital signal processing] basic sequence (basic sequence lists | unit pulse sequence | unit pulse function | discrete unit pulse function | difference between unit pulse function and discrete unit p

[digital signal processing] basic sequence (basic sequence lists | unit pulse sequence | unit pulse function | discrete unit pulse function | difference between unit pulse function and discrete unit p

2022-06-26 06:34:00 Hanshuliang





One 、 Basic sequence enumeration



Basic sequence Yes

  • Unit pulse sequence
  • Unit step sequence
  • Rectangular sequence
  • Real exponential sequence
  • Sinusoidal sequence
  • Complex exponential sequence




Two 、 Unit pulse sequence



Unit pulse sequence :

δ ( n ) = { 1      n = 0 0      n = 1 \delta (n) = \begin{cases} 1 \ \ \ \ n = 0 \\ \\ 0 \ \ \ \ n = 1 \end{cases} δ(n)=1    n=00    n=1


1、 Unit pulse function


Unit pulse function ( Unit impulse function ) Corresponding Function image as follows : The horizontal axis is n n n , The vertical axis is δ ( n ) \delta (n) δ(n) ;

  • n = 0 n = 0 n=0 when , δ ( n ) = 1 \delta (n) = 1 δ(n)=1
  • n = 1 n = 1 n=1 when , δ ( n ) = 0 \delta (n) = 0 δ(n)=0
     Insert picture description here

2、 Discrete unit impulse function


Here pay attention to and " Discrete unit impulse function " Distinguish , I added " discrete " Two words , Its value is no longer fixed 0 , 1 0 , 1 0,1 ;

Discrete unit impulse function ( Discrete unit impulse function ) Corresponding Function image as follows : The horizontal axis is t t t , The vertical axis is δ ( t ) \delta (t) δ(t) ;

  • t = 0 t = 0 t=0 when , δ ( t ) \delta (t) δ(t) Is infinite
  • t = 1 t = 1 t=1 when , δ ( t ) = 0 \delta (t) = 0 δ(t)=0
     Insert picture description here

3、 Unit pulse function And The difference between discrete unit impulse functions


Unit pulse function And Discrete unit impulse function The difference between :

① The horizontal axis coordinate is 0 The situation of :

stay Unit pulse function δ ( n ) \delta (n) δ(n) in , n = 0 n = 0 n=0 when , δ ( n ) = 1 \delta (n) = 1 δ(n)=1

stay Discrete unit impulse function δ ( t ) \delta (t) δ(t) in , t = 0 t = 0 t=0 when , δ ( t ) \delta (t) δ(t) Is infinite ;


② The vertical axis coordinate is 0 The situation of , That is, the function is 0 0 0 The situation of :

stay Unit pulse function δ ( n ) \delta (n) δ(n) in , stay n = ⋯   , − 3 , − 2 , − 1 , 1 , 2 , 3 , ⋯ n = \cdots , -3 , -2, -1 , 1, 2, 3, \cdots n=,3,2,1,1,2,3, The value at the position of an equal integer is 0 0 0 ;

stay Discrete unit impulse function δ ( t ) \delta (t) δ(t) in , t t t Divide by 0 0 0 Any value other than , The corresponding function value δ ( t ) \delta (t) δ(t) All for 0 0 0 ;


③ Whether it can be realized :

Unit pulse function δ ( n ) \delta (n) δ(n) It is physically achievable ;

Discrete unit impulse function δ ( t ) \delta (t) δ(t) Physically impossible ;

原网站

版权声明
本文为[Hanshuliang]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/02/202202171325204116.html