当前位置:网站首页>MCS:多元随机变量——多项式分布
MCS:多元随机变量——多项式分布
2022-06-29 14:39:00 【今晚打佬虎】
Multinomial多项式
假设一个实验有 k k k个相互独立的结果: R 1 , R 2 , . . . R k R_1, R_2, ... R_k R1,R2,...Rk对应发生的概率分别是: p 1 , p 2 , . . . p k p_1, p_2, ...p_k p1,p2,...pk。且 ∑ i = 1 k p i = 1.0 \sum_{i=1}^k p_i = 1.0 ∑i=1kpi=1.0。独立重复 n n n次实验,每一种实验结果发生的次数可以用随机变量 x 1 , x 2 , . . x k x_1, x_2, .. x_k x1,x2,..xk来表示, ∑ i = 1 k x i = n \sum_{i=1}^k x_i = n ∑i=1kxi=n。
x i x_i xi的概率分布:
P ( x 1 , . . . , x k ) = n ! [ x 1 ! . . . x k ! ] p 1 x 1 . . . p k x k P(x_1, ..., x_k) = \frac{n!}{[x_1!...x_k!]p_1^{x_1} ... p_k^{x_k}} P(x1,...,xk)=[x1!...xk!]p1x1...pkxkn!
x i x_i xi的边际(期望和方差):
E ( x i ) = n p i E(x_i) = np_i E(xi)=npi
V ( x i ) = n p i ( 1 − p i ) V(x_i) = np_i(1 - p_i) V(xi)=npi(1−pi)
生成多项式随机变量
已知:多显示变量: ( x 1 , x 2 , . . . , x k ) (x_1, x_2, ...,x_k) (x1,x2,...,xk),发生的概率: ( p 1 , P 2 , . . . p k ) (p_1, P_2, ...p_k) (p1,P2,...pk)
- i = 1 → k i = 1 \to k i=1→k
- p i ′ = p i / ∑ j = i k p j p_i' = p_i / \sum_{j=i}^k p_j pi′=pi/∑j=ikpj
- n i ′ = n − ∑ j = 1 i − 1 x j n_i' = n - \sum_{j=1}^{i-1} x_j ni′=n−∑j=1i−1xj
- 生成一个随机的二项式变量: x i ∼ B i n o m i a l ( n i ′ , p i ′ ) x_i \sim Binomial(n_i', p_i') xi∼Binomial(ni′,pi′)
- ( x 1 , x 2 , . . . x k ) (x1, x_2, ... x_k) (x1,x2,...xk)
例:假设一个实验只有三种结果可能发生,概率分别是:0.5, 0.3, 0.2。假设重复进行五次的独立实验,这种情况下每种情况出现的次数,即:随机的多项式变量: x 1 , x 2 , x 3 x_1, x_2, x_3 x1,x2,x3可能是多少?
- i = 1 , n 1 ′ = 5 , p 1 ′ = 0.5 , B i n o m i a l ( 5 , 0.5 ) = 2 , x 1 = 2 i = 1,n_1' = 5,p_1' = 0.5, Binomial(5, 0.5) = 2, x_1 = 2 i=1,n1′=5,p1′=0.5,Binomial(5,0.5)=2,x1=2
- i = 2 , n 2 ′ = 3 , p 2 ′ = 0.3 / ( 0.3 + 0.2 ) = 0.6 , B i n o m i a l ( 3 , 0.6 ) = 2 , x 2 = 2 i = 2, n_2' = 3,p_2' = 0.3/(0.3+0.2) = 0.6, Binomial(3, 0.6) = 2, x_2 = 2 i=2,n2′=3,p2′=0.3/(0.3+0.2)=0.6,Binomial(3,0.6)=2,x2=2
- i = 3 , n 3 ′ = 1 , p 3 ′ = 0.2 / 0.2 = 1.0 , B i n o m i a l ( 1 , 1.0 ) = 1 , x 3 = 1 i = 3, n_3' = 1, p_3' = 0.2/0.2 = 1.0, Binomial(1, 1.0) = 1, x_3 = 1 i=3,n3′=1,p3′=0.2/0.2=1.0,Binomial(1,1.0)=1,x3=1
- ( x 1 = 2 , x 2 = 2 , x 3 = 1 ) (x_1 = 2, x_2 = 2, x_3 = 1) (x1=2,x2=2,x3=1)
模拟生成多项式变量
import numpy as np
import matplotlib.pyplot as plt
def generateMultinomial(n = 100, k=3, probas=[0.5, 0.3, 0.2]):
x = [0, 0, 0]
for i in range(k):
p_ = probas[i]/np.sum(probas[i:])
n_ = n - np.sum(x[:i+1])
b = np.random.binomial(n_, p_)
x[i] = b
return x

边栏推荐
- 驱动器实际运用案例
- 重磅!2022最新SCI影响因子发布,三大名刊NCS及国内期刊TOP10排名有变化 (内附2022年最新影响因子)
- 面试突击61:说一下MySQL事务隔离级别?
- 两个字的名字如何变成有空格的3个字符的名字
- 部署搭建decentraland流程讲解
- 三角函数对应在平面坐标上画圆
- Can futures accounts be opened offline? Is it safe to open an account online?
- [QT tutorial] QPushButton key and double click effect
- Weigao blood purification sprint to Hong Kong: annual revenue of RMB 2.9 billion, net profit decreased by 12.7%
- Are the top ten domestic securities companies safe?
猜你喜欢

Swagger2的配置教程

Chinese garbled code output from idea output station
![[blackduck] configure the specified Synopsys detect scan version under Jenkins](/img/85/73988e6465e8c25d6ab8547040a8fb.png)
[blackduck] configure the specified Synopsys detect scan version under Jenkins

curl: (56) Recv failure: Connection reset by peer

仿头条新闻资讯dz模板 Discuz新闻资讯商业版GBK模板源码

织梦dedecms资源素材教程下载网站模板源码(带手机移动端)附安装教程

揭秘!付费会员制下的那些小心机!

建立自己的网站(19)

Uncover the secret! Pay attention to those machines under the membership system!

Practical application cases of drives
随机推荐
捷氢科技冲刺科创板:拟募资10.6亿 上汽集团是大股东
EMC surge protection and decoupling design
word如何自动生成目录
QRCode自定义二维码中间图片
Transport layer user datagram protocol (UDP)
Is 100W data table faster than 1000W data table query in MySQL?
[QT tutorial] QPushButton key and double click effect
Nuscenes configuration information about radar
Chapter 7 deformation operation of canvas
网易严选离线数仓质量建设实践
中国软冰淇淋市场预测与投资前景研究报告(2022版)
[blackduck] configure the specified Synopsys detect scan version under Jenkins
redis在window和Linux环境下的安装
Can futures accounts be opened offline? Is it safe to open an account online?
Imitation headline news information DZ template discuz news information business version GBK template source code
The 5th China software open source innovation competition | opengauss track live training
Ogg synchronize MySQL data to greenplus
中国三氧化二砷行业研究与未来预测报告(2022版)
阿里云体验有奖:使用PolarDB-X与Flink搭建实时数据大屏
Opengauss community establishes sig knowledgegraph