当前位置:网站首页>Performance analysis of continuous time system (1) - performance index and first and second order analysis of control system
Performance analysis of continuous time system (1) - performance index and first and second order analysis of control system
2022-07-27 19:04:00 【Miracle Fan】
Self control principle learning notes
Self control principle learning notes column
List of articles
Preface
In control theory , The analysis of control system can be divided into time domain analysis and frequency domain analysis . Frequency domain analysis is by inputting sinusoidal input signals of different frequencies to the system , Analyze the steady-state response of the system ; Time domain analysis is to evaluate the performance of the system by studying the time response of the system . This chapter mainly studies the time domain performance and frequency domain performance of the system , Time domain response is to find out the specific response waveform of the system , Frequency analysis can only get the characteristic information of the system response .
1. Control system performance index

1.1 Transient performance
1.1.1 Rise time t r t_r tr——rise time
Steady state values range from 10%——>90% Time required ; Underdamped :0100%, Overdamping :1090%
1.1.2 Peak time t p t_p tp——peak time
The first peak time when the response reaches the overshoot
1.1.3 Maximum overshoot M p M_p Mp——maximum percent overshoot
Percentage of the final value exceeded for the first time
M p = y ( t p ) − y ( ∞ ) y ( ∞ ) × 100 % Non zero case : M p = y ( t p ) − y ( ∞ ) y ( ∞ ) − y ( 0 ) × 100 % M_p=\frac{y(t_p)-y(\infty)}{y(\infty)}\times100\%\\ {\color{Red} \text{ Non zero case :}M_p=\frac{y(t_p)-y(\infty)}{y(\infty)-y(0)}\times100\%} Mp=y(∞)y(tp)−y(∞)×100% Non zero case :Mp=y(∞)−y(0)y(tp)−y(∞)×100%
Generally, the faster the response , The greater the overshoot .
1.1.4 Adjust the time t s t_s ts——settling time
When the steady-state allowable error reaches 2 % ∼ 5 % 2\% \sim5\% 2%∼5%
1.1.5 Delay time t d t_d td——delay time
The response curve reaches 1 2 \frac{1}{2} 21 The time required for the steady-state value of
1.1.6 Number of oscillations
1.1.7 Attenuation ratio
1.2 Steady state performance
1.2.1 Steady state error —— e s s e_{ss} ess
The error between the actual value and the expected value of the steady-state response of the steady-state system .
2. Typical first-order time domain analysis
2.1 Definition
The typical first-order system block diagram can be simplified as follows .

structure characteristics :
- Unit negative feedback
- Open loop transfer function is another integral link , The open-loop gain is the reciprocal of the time constant K = 1 T K=\frac{1}{T} K=T1
2.2 Response of typical links
Unit step response - r ( t ) = ϵ ( t ) , R ( s ) = 1 s r(t)=\epsilon(t),R(s)=\frac{1}{s} r(t)=ϵ(t),R(s)=s1
Output is :
y ( t ) = 1 − e − t T → 1 e s s = lim t → ∞ e ( t ) = 0 y(t)=1-\mathrm{e}^{-\frac{t}{T}} \rightarrow 1\\ e_{ss}=\lim_{t\rightarrow\infty}e(t)=0 y(t)=1−e−Tt→1ess=t→∞lime(t)=0
The steady-state error is :Unit impulse response - r ( t ) = δ ( t ) , R ( s ) = 1 r(t)=\delta(t),R(s)=1 r(t)=δ(t),R(s)=1
Output is :
y ( t ) = 1 T e − t / T → 0 y(t)=\frac{1}{T} \mathrm{e}^{-t / T} \rightarrow 0\\ y(t)=T1e−t/T→0
The steady-state error is :
e ( t ) = r ( t ) − y ( t ) = δ ( t ) − T e − 1 T t e s s = lim t → ∞ e ( t ) = δ ( t ) − T e(t)=r(t)-y(t)=\delta(t)-Te^{-\frac{1}{T}t}\\ e_{ss}=\lim_{t\rightarrow\infty}e(t)=\delta(t)-T e(t)=r(t)−y(t)=δ(t)−Te−T1tess=t→∞lime(t)=δ(t)−TUnit slope response - r ( t ) = t , R ( s ) = 1 s 2 r(t)=t,R(s)=\frac{1}{s^2} r(t)=t,R(s)=s21
Output is :
y ( t ) = t − T + T e − t / T → t − T y(t)=t-T+T \mathrm{e}^{-t / T} \rightarrow t-T\\ y(t)=t−T+Te−t/T→t−T
Steady state error :
e ( t ) = r ( t ) − y ( t ) = T ( 1 − e − 1 T t ) e s s = lim t → ∞ e ( t ) = T e(t)=r(t)-y(t)=T(1-e^{-\frac{1}{T}t})\\ e_{ss}=\lim_{t\rightarrow\infty}e(t)=T e(t)=r(t)−y(t)=T(1−e−T1t)ess=t→∞lime(t)=TUnit acceleration response - r ( t ) = 1 2 t 2 , R ( s ) = 1 s 3 r(t)=\frac{1}{2}t^2,R(s)=\frac{1}{s^3} r(t)=21t2,R(s)=s31
Output is :
y ( t ) = 1 2 t 2 − T t + T 2 ( 1 − e − 1 T t ) → 1 2 t 2 − T t + T 2 y(t)=\frac{1}{2} t^{2}-T t+T^{2}\left(1-\mathrm{e}^{-\frac{1}{T} t}\right) \rightarrow \frac{1}{2} t^{2}-T t+T^{2} y(t)=21t2−Tt+T2(1−e−T1t)→21t2−Tt+T2
Steady state error :
e ( t ) = r ( t ) − y ( t ) = T t − T 2 ( 1 − e − 1 T t ) e s s = lim t → ∞ e ( t ) = ∞ e(t)=r(t)-y(t)=Tt-T^2(1-e^{-\frac{1}{T}t})\\ e_{ss}=\lim_{t\rightarrow\infty}e(t)=\infty e(t)=r(t)−y(t)=Tt−T2(1−e−T1t)ess=t→∞lime(t)=∞
The following figure shows the unit impulse response , Unit step response , Response function of unit slope response , You can see that the unit responds to each link by presenting integral / Differential relation , Then their output has also been integrated / Differential link .

3. Typical second-order time domain analysis
3.1 Definition
Transfer function :
Y ( s ) R ( s ) = ω n 2 s 2 + 2 ζ ω n s + ω n 2 \frac{Y(s)}{R(s)}=\frac{\omega_{\mathrm{n}}^{2}}{s^{2}+2 \zeta \omega_{\mathrm{n}} s+\omega_{\mathrm{n}}^{2}} R(s)Y(s)=s2+2ζωns+ωn2ωn2Typical structure diagram :

Structural features :
(1) Unit negative feedback structure
(2) The open-loop transfer function has only one integral link , The open-loop gain is K = w n / ( 2 ζ ) K=w_n/(2\zeta) K=wn/(2ζ)
3.2 Response of typical links
Slope response
Output is :
Y ( s ) = 1 s 2 ⋅ ω n 2 s 2 + 2 ζ ω n s + ω n 2 Y(s)=\frac{1}{s^{2}} \cdot \frac{\omega_{\mathrm{n}}^{2}}{s^{2}+2 \zeta \omega_{\mathrm{n}} s+\omega_{\mathrm{n}}^{2}} Y(s)=s21⋅s2+2ζωns+ωn2ωn2
Steady state error :
E ( s ) = R ( s ) − Y ( s ) = 1 s 2 − 1 s 2 ⋅ ω n 2 s 2 + 2 ζ ω n s + ω n 2 = 1 s ⋅ s + 2 ζ ω n s 2 + 2 ζ ω n s + ω n 2 e s s = lim t → ∞ e ( t ) = lim s → 0 s E ( s ) = lim s → 0 s + 2 ζ ω n s 2 + 2 ζ ω n s + ω n 2 = 2 ζ ω n \begin{aligned} E(s) &=R(s)-Y(s)=\frac{1}{s^{2}}-\frac{1}{s^{2}} \cdot \frac{\omega_{\mathrm{n}}^{2}}{s^{2}+2 \zeta \omega_{\mathrm{n}} s+\omega_{\mathrm{n}}^{2}} \\ &=\frac{1}{s} \cdot \frac{s+2 \zeta \omega_{\mathrm{n}}}{s^{2}+2 \zeta \omega_{\mathrm{n}} s+\omega_{\mathrm{n}}^{2}} \\ e_{ss}=\lim _{t \rightarrow \infty} e(t) &=\lim _{s \rightarrow 0} s E(s)=\lim _{s \rightarrow 0} \frac{s+2 \zeta \omega_{\mathrm{n}}}{s^{2}+2 \zeta \omega_{\mathrm{n}} s+\omega_{\mathrm{n}}^{2}}=\frac{2 \zeta}{\omega_{\mathrm{n}}} \end{aligned} E(s)ess=t→∞lime(t)=R(s)−Y(s)=s21−s21⋅s2+2ζωns+ωn2ωn2=s1⋅s2+2ζωns+ωn2s+2ζωn=s→0limsE(s)=s→0lims2+2ζωns+ωn2s+2ζωn=ωn2ζThe relationship between transient performance and damping coefficient and natural frequency angular frequency
ζ > 1 \zeta>1 ζ>1: Overdamping
ζ = 1 \zeta=1 ζ=1: Critical damping
0 < ζ < 1 0<\zeta<1 0<ζ<1: Underdamped , It has good transient performance , Attenuated oscillation .

4. Underdamped transient performance
4.1 Take the unit step response as an example :
Y ( s ) = 1 s ⋅ ω n 2 s 2 + 2 ζ ω n s + ω n 2 = 1 s − s + ζ ω n ( s + ζ ω n ) 2 + ( 1 − ζ 2 ) ω n 2 − ζ ( s + ζ ω n ) 2 + ( 1 − ζ 2 ) ω n 2 \begin{aligned} Y(s) =&\frac{1}{s} \cdot \frac{\omega_{\mathrm{n}}^{2}}{s^{2}+2 \zeta \omega_{\mathrm{n}} s+\omega_{\mathrm{n}}^{2}} \\ = & \frac{1}{s}-\frac{s+\zeta \omega_{\mathrm{n}}}{\left(s+\zeta \omega_{\mathrm{n}}\right)^{2}+\left(1-\zeta^{2}\right) \omega_{\mathrm{n}}^{2}}-\frac{\zeta}{\left(s+\zeta \omega_{\mathrm{n}}\right)^{2}+\left(1-\zeta^{2}\right) \omega_{\mathrm{n}}^{2}} \\ \end{aligned} Y(s)==s1⋅s2+2ζωns+ωn2ωn2s1−(s+ζωn)2+(1−ζ2)ωn2s+ζωn−(s+ζωn)2+(1−ζ2)ωn2ζ
y ( t ) = 1 − e − ζ ω n t [ cos ( 1 − ζ 2 ω n t ) + ζ 1 − ζ 2 sin ( 1 − ζ 2 ω n t ) ] = 1 − e − ζ ω n t 1 − ζ 2 [ 1 − ζ 2 cos ( 1 − ζ 2 ω n t ) + ζ sin ( 1 − ζ 2 ω n t ) ] = 1 − e − ζ ω n t 1 − ζ 2 [ sin ( arccos ζ ) cos ( 1 − ζ 2 ω n t ) + cos ( arccos ζ ) sin ( 1 − ζ 2 ω n t = 1 − e − ζ ω n t 1 − ζ 2 sin ( 1 − ζ 2 ω n t + arccos ζ ) \begin{aligned} y(t)&=1-\mathrm{e}^{-\zeta \omega_{\mathrm{n}} t}\left[\cos \left(\sqrt{1-\zeta^{2}} \omega_{\mathrm{n}} t\right)+\frac{\zeta}{\sqrt{1-\zeta^{2}}} \sin \left(\sqrt{1-\zeta^{2}} \omega_{\mathrm{n}} t\right)\right] \\ &=1-\frac{\mathrm{e}^{-\zeta \omega_{\mathrm{n}} t}}{\sqrt{1-\zeta^{2}}}\left[\sqrt{1-\zeta^{2}} \cos \left(\sqrt{1-\zeta^{2}} \omega_{\mathrm{n}} t\right)+\zeta \sin \left(\sqrt{1-\zeta^{2}} \omega_{\mathrm{n}} t\right)\right] \\ &=1-\frac{\mathrm{e}^{-\zeta \omega_{\mathrm{n}} t}}{\sqrt{1-\zeta^{2}}}\left[\sin (\arccos \zeta) \cos \left(\sqrt{1-\zeta^{2}} \omega_{\mathrm{n}} t\right)+\cos (\arccos \zeta) \sin \left(\sqrt{1-\zeta^{2} \omega_{\mathrm{n}} t}\right.\right. \\ &=1-\frac{\mathrm{e}^{-\zeta \omega_{\mathrm{n}} t}}{\sqrt{1-\zeta^{2}}} \sin \left(\sqrt{1-\zeta^{2}} \omega_{\mathrm{n}} t+\arccos \zeta\right) \\ \end{aligned} y(t)=1−e−ζωnt[cos(1−ζ2ωnt)+1−ζ2ζsin(1−ζ2ωnt)]=1−1−ζ2e−ζωnt[1−ζ2cos(1−ζ2ωnt)+ζsin(1−ζ2ωnt)]=1−1−ζ2e−ζωnt[sin(arccosζ)cos(1−ζ2ωnt)+cos(arccosζ)sin(1−ζ2ωnt=1−1−ζ2e−ζωntsin(1−ζ2ωnt+arccosζ)
remember failure reduce system Count σ = ζ w n , Resistance Ni Vibration Swing frequency rate w d = 1 − ζ 2 w n , cos β = ζ , sin β = 1 − ζ 2 , Its in β call by Resistance Ni horn Record the attenuation coefficient \sigma=\zeta w_n, Damped oscillation frequency w_d=\sqrt {1-\zeta^2}w_n,\cos\beta=\zeta,\sin\beta=\sqrt{1-\zeta^2}, among \beta This is called the damping angle remember failure reduce system Count σ=ζwn, Resistance Ni Vibration Swing frequency rate wd=1−ζ2wn,cosβ=ζ,sinβ=1−ζ2, Its in β call by Resistance Ni horn
4.2 Transient performance index
Peak time
Make y ˙ ( t ) = 0 , namely e − σ t ω n 1 − ζ 2 sin ( ω d t ) = 0 have to To : t = k π ω d , k = 1 , 2 , ⋯ The first One individual peak value Of when between by t p = π ω d = π ω n 1 − ζ 2 \begin{aligned} Make \dot{y}(t) & = 0 , namely \\ &\frac{\mathrm{e}^{-\sigma t} \omega_{\mathrm{n}}}{\sqrt{1-\zeta^{2}}} \sin \left(\omega_{\mathrm{d}} t\right) = 0\\ obtain :\\ &t = \frac{k \pi}{\omega_{d}}, k = 1,2, \cdots\\ The time of the first peak is \\ t_{\mathrm{p}} & = \frac{\pi}{\omega_{\mathrm{d}}} = \frac{\pi}{\omega_{\mathrm{n}} \sqrt{1-\zeta^{2}}} \end{aligned} Make y˙(t) have to To : The first One individual peak value Of when between by tp=0, namely 1−ζ2e−σtωnsin(ωdt)=0t=ωdkπ,k=1,2,⋯=ωdπ=ωn1−ζ2πMaximum overshoot
Calculate the peak time by substituting it into the definition
M p = e − π ζ 1 − ζ 2 × 100 % M_p=e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}\times100\% Mp=e−1−ζ2πζ×100%Adjust the time (5%)
Envelope curve is often used to replace actual curve estimation in engineering , Make e − ζ w n t 1 − ζ 2 = 0.05 \frac{e^{-\zeta w_nt}}{\sqrt{1-\zeta^2}}=0.05 1−ζ2e−ζwnt=0.05
t s = − ln ( 0.05 1 − ζ 2 ) ζ ω n When 0 < ζ < 0.8 when , near like Yes t s = 3 ∼ 3.5 ζ ω n t_{\mathrm{s}}=-\frac{\ln \left(0.05 \sqrt{1-\zeta^{2}}\right)}{\zeta \omega_{\mathrm{n}}}\\ When 0<\zeta<0.8 when , Approximate \\ t_{\mathrm{s}}=\frac{3 \sim 3.5}{\zeta \omega_{\mathrm{n}}}\\ ts=−ζωnln(0.051−ζ2) When 0<ζ<0.8 when , near like Yes ts=ζωn3∼3.5Rise time
t r = π − β ω d = π − β ω n 1 − ζ 2 t_{\mathrm{r}}=\frac{\pi-\beta}{\omega_{\mathrm{d}}}=\frac{\pi-\beta}{\omega_{\mathrm{n}} \sqrt{1-\zeta^{2}}}\\ tr=ωdπ−β=ωn1−ζ2π−β
Make y ( t ) = 1 − e − σ t 1 − ζ 2 sin ( ω d t + β ) = 1 , Just can With have to To t r = π − β ω d . Make y(t)=1-\frac{e^{-\sigma t}}{\sqrt{1-\zeta^{2}}} \sin \left(\omega_{\mathrm{d}} t+\beta\right)=1 , You can get t_{\mathrm{r}}=\frac{\pi-\beta}{\omega_{\mathrm{d}}} . Make y(t)=1−1−ζ2e−σtsin(ωdt+β)=1, Just can With have to To tr=ωdπ−β.
4.3 summary
- ζ \zeta ζ The smaller it is , The greater the overshoot , The less stable , The longer the adjustment time
- ζ \zeta ζ Too big , The system is slow to respond , The adjustment time is also long , Poor rapidity
- Usually take ζ \zeta ζ by 0.707
边栏推荐
猜你喜欢
随机推荐
Commodity comment information and comment information classification
Led with fan eye protection learning table lamp touch chip-dlt8s12a
Redis annotation
Personal Center - order business process
Filebeat.yml configuration file about the configuration of multiple services
「测试新手百科」5 分钟快速上手Pytest 自动化测试框架
Uploading and downloading of files
C file and folder input / output stream code
Electromagnetic field learning notes - vector analysis and field theory foundation
Self control principle learning notes - system stability analysis (2) - loop analysis and Nyquist bode criterion
用Matlab生成适用于期刊及会议的图形- plot
log4j. Properties log details
MySQL 06 transaction, view, index, backup and recovery
Ruiji takeout SQL table
Ridis command notes
怎样产生标准分布或高斯分布的随机数
MongoDB
Self control principle learning notes - system stability analysis (1) - BIBO stability and Routh criterion
Order timeout cancellation and commodity query by category
Blog Garden beautification tutorial








