当前位置:网站首页>Performance analysis of continuous time system (1) - performance index and first and second order analysis of control system

Performance analysis of continuous time system (1) - performance index and first and second order analysis of control system

2022-07-27 19:04:00 Miracle Fan

Self control principle learning notes
Self control principle learning notes column



Preface

In control theory , The analysis of control system can be divided into time domain analysis and frequency domain analysis . Frequency domain analysis is by inputting sinusoidal input signals of different frequencies to the system , Analyze the steady-state response of the system ; Time domain analysis is to evaluate the performance of the system by studying the time response of the system . This chapter mainly studies the time domain performance and frequency domain performance of the system , Time domain response is to find out the specific response waveform of the system , Frequency analysis can only get the characteristic information of the system response .

1. Control system performance index

 Wechat pictures _20220401201951

1.1 Transient performance

1.1.1 Rise time t r t_r tr——rise time

Steady state values range from 10%——>90% Time required ; Underdamped :0100%, Overdamping :1090%

1.1.2 Peak time t p t_p tp——peak time

The first peak time when the response reaches the overshoot

1.1.3 Maximum overshoot M p M_p Mp——maximum percent overshoot

Percentage of the final value exceeded for the first time
M p = y ( t p ) − y ( ∞ ) y ( ∞ ) × 100 % Non zero case : M p = y ( t p ) − y ( ∞ ) y ( ∞ ) − y ( 0 ) × 100 % M_p=\frac{y(t_p)-y(\infty)}{y(\infty)}\times100\%\\ {\color{Red} \text{ Non zero case :}M_p=\frac{y(t_p)-y(\infty)}{y(\infty)-y(0)}\times100\%} Mp=y()y(tp)y()×100% Non zero case :Mp=y()y(0)y(tp)y()×100%
Generally, the faster the response , The greater the overshoot .

1.1.4 Adjust the time t s t_s ts——settling time

When the steady-state allowable error reaches 2 % ∼ 5 % 2\% \sim5\% 2%5%

1.1.5 Delay time t d t_d td——delay time

The response curve reaches 1 2 \frac{1}{2} 21 The time required for the steady-state value of

1.1.6 Number of oscillations

1.1.7 Attenuation ratio

1.2 Steady state performance

1.2.1 Steady state error —— e s s e_{ss} ess

The error between the actual value and the expected value of the steady-state response of the steady-state system .

2. Typical first-order time domain analysis

2.1 Definition

The typical first-order system block diagram can be simplified as follows .

image-20220404104416888

structure characteristics :

  1. Unit negative feedback
  2. Open loop transfer function is another integral link , The open-loop gain is the reciprocal of the time constant K = 1 T K=\frac{1}{T} K=T1

2.2 Response of typical links

  1. Unit step response - r ( t ) = ϵ ( t ) , R ( s ) = 1 s r(t)=\epsilon(t),R(s)=\frac{1}{s} r(t)=ϵ(t),R(s)=s1

    Output is :
    y ( t ) = 1 − e − t T → 1 e s s = lim ⁡ t → ∞ e ( t ) = 0 y(t)=1-\mathrm{e}^{-\frac{t}{T}} \rightarrow 1\\ e_{ss}=\lim_{t\rightarrow\infty}e(t)=0 y(t)=1eTt1ess=tlime(t)=0
    The steady-state error is :

  2. Unit impulse response - r ( t ) = δ ( t ) , R ( s ) = 1 r(t)=\delta(t),R(s)=1 r(t)=δ(t),R(s)=1

    Output is :
    y ( t ) = 1 T e − t / T → 0 y(t)=\frac{1}{T} \mathrm{e}^{-t / T} \rightarrow 0\\ y(t)=T1et/T0
    The steady-state error is :
    e ( t ) = r ( t ) − y ( t ) = δ ( t ) − T e − 1 T t e s s = lim ⁡ t → ∞ e ( t ) = δ ( t ) − T e(t)=r(t)-y(t)=\delta(t)-Te^{-\frac{1}{T}t}\\ e_{ss}=\lim_{t\rightarrow\infty}e(t)=\delta(t)-T e(t)=r(t)y(t)=δ(t)TeT1tess=tlime(t)=δ(t)T

  3. Unit slope response - r ( t ) = t , R ( s ) = 1 s 2 r(t)=t,R(s)=\frac{1}{s^2} r(t)=t,R(s)=s21

    Output is :
    y ( t ) = t − T + T e − t / T → t − T y(t)=t-T+T \mathrm{e}^{-t / T} \rightarrow t-T\\ y(t)=tT+Tet/TtT
    Steady state error :
    e ( t ) = r ( t ) − y ( t ) = T ( 1 − e − 1 T t ) e s s = lim ⁡ t → ∞ e ( t ) = T e(t)=r(t)-y(t)=T(1-e^{-\frac{1}{T}t})\\ e_{ss}=\lim_{t\rightarrow\infty}e(t)=T e(t)=r(t)y(t)=T(1eT1t)ess=tlime(t)=T

  4. Unit acceleration response - r ( t ) = 1 2 t 2 , R ( s ) = 1 s 3 r(t)=\frac{1}{2}t^2,R(s)=\frac{1}{s^3} r(t)=21t2,R(s)=s31

    Output is :
    y ( t ) = 1 2 t 2 − T t + T 2 ( 1 − e − 1 T t ) → 1 2 t 2 − T t + T 2 y(t)=\frac{1}{2} t^{2}-T t+T^{2}\left(1-\mathrm{e}^{-\frac{1}{T} t}\right) \rightarrow \frac{1}{2} t^{2}-T t+T^{2} y(t)=21t2Tt+T2(1eT1t)21t2Tt+T2
    Steady state error :
    e ( t ) = r ( t ) − y ( t ) = T t − T 2 ( 1 − e − 1 T t ) e s s = lim ⁡ t → ∞ e ( t ) = ∞ e(t)=r(t)-y(t)=Tt-T^2(1-e^{-\frac{1}{T}t})\\ e_{ss}=\lim_{t\rightarrow\infty}e(t)=\infty e(t)=r(t)y(t)=TtT2(1eT1t)ess=tlime(t)=
    The following figure shows the unit impulse response , Unit step response , Response function of unit slope response , You can see that the unit responds to each link by presenting integral / Differential relation , Then their output has also been integrated / Differential link .

image-20220404111136529

3. Typical second-order time domain analysis

3.1 Definition

  1. Transfer function :
    Y ( s ) R ( s ) = ω n 2 s 2 + 2 ζ ω n s + ω n 2 \frac{Y(s)}{R(s)}=\frac{\omega_{\mathrm{n}}^{2}}{s^{2}+2 \zeta \omega_{\mathrm{n}} s+\omega_{\mathrm{n}}^{2}} R(s)Y(s)=s2+2ζωns+ωn2ωn2

  2. Typical structure diagram :
    image-20220404114220210

  3. Structural features :

    (1) Unit negative feedback structure

    (2) The open-loop transfer function has only one integral link , The open-loop gain is K = w n / ( 2 ζ ) K=w_n/(2\zeta) K=wn/(2ζ)

3.2 Response of typical links

  1. Slope response

    Output is :
    Y ( s ) = 1 s 2 ⋅ ω n 2 s 2 + 2 ζ ω n s + ω n 2 Y(s)=\frac{1}{s^{2}} \cdot \frac{\omega_{\mathrm{n}}^{2}}{s^{2}+2 \zeta \omega_{\mathrm{n}} s+\omega_{\mathrm{n}}^{2}} Y(s)=s21s2+2ζωns+ωn2ωn2
    Steady state error :
    E ( s ) = R ( s ) − Y ( s ) = 1 s 2 − 1 s 2 ⋅ ω n 2 s 2 + 2 ζ ω n s + ω n 2 = 1 s ⋅ s + 2 ζ ω n s 2 + 2 ζ ω n s + ω n 2 e s s = lim ⁡ t → ∞ e ( t ) = lim ⁡ s → 0 s E ( s ) = lim ⁡ s → 0 s + 2 ζ ω n s 2 + 2 ζ ω n s + ω n 2 = 2 ζ ω n \begin{aligned} E(s) &=R(s)-Y(s)=\frac{1}{s^{2}}-\frac{1}{s^{2}} \cdot \frac{\omega_{\mathrm{n}}^{2}}{s^{2}+2 \zeta \omega_{\mathrm{n}} s+\omega_{\mathrm{n}}^{2}} \\ &=\frac{1}{s} \cdot \frac{s+2 \zeta \omega_{\mathrm{n}}}{s^{2}+2 \zeta \omega_{\mathrm{n}} s+\omega_{\mathrm{n}}^{2}} \\ e_{ss}=\lim _{t \rightarrow \infty} e(t) &=\lim _{s \rightarrow 0} s E(s)=\lim _{s \rightarrow 0} \frac{s+2 \zeta \omega_{\mathrm{n}}}{s^{2}+2 \zeta \omega_{\mathrm{n}} s+\omega_{\mathrm{n}}^{2}}=\frac{2 \zeta}{\omega_{\mathrm{n}}} \end{aligned} E(s)ess=tlime(t)=R(s)Y(s)=s21s21s2+2ζωns+ωn2ωn2=s1s2+2ζωns+ωn2s+2ζωn=s0limsE(s)=s0lims2+2ζωns+ωn2s+2ζωn=ωn2ζ

  2. The relationship between transient performance and damping coefficient and natural frequency angular frequency

    ζ > 1 \zeta>1 ζ>1: Overdamping

    ζ = 1 \zeta=1 ζ=1: Critical damping

    0 < ζ < 1 0<\zeta<1 0<ζ<1: Underdamped , It has good transient performance , Attenuated oscillation .

image-20220404113904536

4. Underdamped transient performance

4.1 Take the unit step response as an example :

Y ( s ) = 1 s ⋅ ω n 2 s 2 + 2 ζ ω n s + ω n 2 = 1 s − s + ζ ω n ( s + ζ ω n ) 2 + ( 1 − ζ 2 ) ω n 2 − ζ ( s + ζ ω n ) 2 + ( 1 − ζ 2 ) ω n 2 \begin{aligned} Y(s) =&\frac{1}{s} \cdot \frac{\omega_{\mathrm{n}}^{2}}{s^{2}+2 \zeta \omega_{\mathrm{n}} s+\omega_{\mathrm{n}}^{2}} \\ = & \frac{1}{s}-\frac{s+\zeta \omega_{\mathrm{n}}}{\left(s+\zeta \omega_{\mathrm{n}}\right)^{2}+\left(1-\zeta^{2}\right) \omega_{\mathrm{n}}^{2}}-\frac{\zeta}{\left(s+\zeta \omega_{\mathrm{n}}\right)^{2}+\left(1-\zeta^{2}\right) \omega_{\mathrm{n}}^{2}} \\ \end{aligned} Y(s)==s1s2+2ζωns+ωn2ωn2s1(s+ζωn)2+(1ζ2)ωn2s+ζωn(s+ζωn)2+(1ζ2)ωn2ζ

y ( t ) = 1 − e − ζ ω n t [ cos ⁡ ( 1 − ζ 2 ω n t ) + ζ 1 − ζ 2 sin ⁡ ( 1 − ζ 2 ω n t ) ] = 1 − e − ζ ω n t 1 − ζ 2 [ 1 − ζ 2 cos ⁡ ( 1 − ζ 2 ω n t ) + ζ sin ⁡ ( 1 − ζ 2 ω n t ) ] = 1 − e − ζ ω n t 1 − ζ 2 [ sin ⁡ ( arccos ⁡ ζ ) cos ⁡ ( 1 − ζ 2 ω n t ) + cos ⁡ ( arccos ⁡ ζ ) sin ⁡ ( 1 − ζ 2 ω n t = 1 − e − ζ ω n t 1 − ζ 2 sin ⁡ ( 1 − ζ 2 ω n t + arccos ⁡ ζ ) \begin{aligned} y(t)&=1-\mathrm{e}^{-\zeta \omega_{\mathrm{n}} t}\left[\cos \left(\sqrt{1-\zeta^{2}} \omega_{\mathrm{n}} t\right)+\frac{\zeta}{\sqrt{1-\zeta^{2}}} \sin \left(\sqrt{1-\zeta^{2}} \omega_{\mathrm{n}} t\right)\right] \\ &=1-\frac{\mathrm{e}^{-\zeta \omega_{\mathrm{n}} t}}{\sqrt{1-\zeta^{2}}}\left[\sqrt{1-\zeta^{2}} \cos \left(\sqrt{1-\zeta^{2}} \omega_{\mathrm{n}} t\right)+\zeta \sin \left(\sqrt{1-\zeta^{2}} \omega_{\mathrm{n}} t\right)\right] \\ &=1-\frac{\mathrm{e}^{-\zeta \omega_{\mathrm{n}} t}}{\sqrt{1-\zeta^{2}}}\left[\sin (\arccos \zeta) \cos \left(\sqrt{1-\zeta^{2}} \omega_{\mathrm{n}} t\right)+\cos (\arccos \zeta) \sin \left(\sqrt{1-\zeta^{2} \omega_{\mathrm{n}} t}\right.\right. \\ &=1-\frac{\mathrm{e}^{-\zeta \omega_{\mathrm{n}} t}}{\sqrt{1-\zeta^{2}}} \sin \left(\sqrt{1-\zeta^{2}} \omega_{\mathrm{n}} t+\arccos \zeta\right) \\ \end{aligned} y(t)=1eζωnt[cos(1ζ2ωnt)+1ζ2ζsin(1ζ2ωnt)]=11ζ2eζωnt[1ζ2cos(1ζ2ωnt)+ζsin(1ζ2ωnt)]=11ζ2eζωnt[sin(arccosζ)cos(1ζ2ωnt)+cos(arccosζ)sin(1ζ2ωnt=11ζ2eζωntsin(1ζ2ωnt+arccosζ)

remember failure reduce system Count σ = ζ w n , Resistance Ni Vibration Swing frequency rate w d = 1 − ζ 2 w n , cos ⁡ β = ζ , sin ⁡ β = 1 − ζ 2 , Its in β call by Resistance Ni horn Record the attenuation coefficient \sigma=\zeta w_n, Damped oscillation frequency w_d=\sqrt {1-\zeta^2}w_n,\cos\beta=\zeta,\sin\beta=\sqrt{1-\zeta^2}, among \beta This is called the damping angle remember failure reduce system Count σ=ζwn, Resistance Ni Vibration Swing frequency rate wd=1ζ2wn,cosβ=ζ,sinβ=1ζ2, Its in β call by Resistance Ni horn

4.2 Transient performance index

  1. Peak time
    Make y ˙ ( t ) = 0 , namely e − σ t ω n 1 − ζ 2 sin ⁡ ( ω d t ) = 0 have to To : t = k π ω d , k = 1 , 2 , ⋯ The first One individual peak value Of when between by t p = π ω d = π ω n 1 − ζ 2 \begin{aligned} Make \dot{y}(t) & = 0 , namely \\ &\frac{\mathrm{e}^{-\sigma t} \omega_{\mathrm{n}}}{\sqrt{1-\zeta^{2}}} \sin \left(\omega_{\mathrm{d}} t\right) = 0\\ obtain :\\ &t = \frac{k \pi}{\omega_{d}}, k = 1,2, \cdots\\ The time of the first peak is \\ t_{\mathrm{p}} & = \frac{\pi}{\omega_{\mathrm{d}}} = \frac{\pi}{\omega_{\mathrm{n}} \sqrt{1-\zeta^{2}}} \end{aligned} Make y˙(t) have to To : The first One individual peak value Of when between by tp=0, namely 1ζ2eσtωnsin(ωdt)=0t=ωdkπ,k=1,2,=ωdπ=ωn1ζ2π

  2. Maximum overshoot

    Calculate the peak time by substituting it into the definition
    M p = e − π ζ 1 − ζ 2 × 100 % M_p=e^{-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}}\times100\% Mp=e1ζ2πζ×100%

  3. Adjust the time (5%)

    Envelope curve is often used to replace actual curve estimation in engineering , Make e − ζ w n t 1 − ζ 2 = 0.05 \frac{e^{-\zeta w_nt}}{\sqrt{1-\zeta^2}}=0.05 1ζ2eζwnt=0.05
    t s = − ln ⁡ ( 0.05 1 − ζ 2 ) ζ ω n When 0 < ζ < 0.8 when , near like Yes t s = 3 ∼ 3.5 ζ ω n t_{\mathrm{s}}=-\frac{\ln \left(0.05 \sqrt{1-\zeta^{2}}\right)}{\zeta \omega_{\mathrm{n}}}\\ When 0<\zeta<0.8 when , Approximate \\ t_{\mathrm{s}}=\frac{3 \sim 3.5}{\zeta \omega_{\mathrm{n}}}\\ ts=ζωnln(0.051ζ2) When 0<ζ<0.8 when , near like Yes ts=ζωn33.5

  4. Rise time
    t r = π − β ω d = π − β ω n 1 − ζ 2 t_{\mathrm{r}}=\frac{\pi-\beta}{\omega_{\mathrm{d}}}=\frac{\pi-\beta}{\omega_{\mathrm{n}} \sqrt{1-\zeta^{2}}}\\ tr=ωdπβ=ωn1ζ2πβ

Make y ( t ) = 1 − e − σ t 1 − ζ 2 sin ⁡ ( ω d t + β ) = 1 , Just can With have to To t r = π − β ω d . Make y(t)=1-\frac{e^{-\sigma t}}{\sqrt{1-\zeta^{2}}} \sin \left(\omega_{\mathrm{d}} t+\beta\right)=1 , You can get t_{\mathrm{r}}=\frac{\pi-\beta}{\omega_{\mathrm{d}}} . Make y(t)=11ζ2eσtsin(ωdt+β)=1, Just can With have to To tr=ωdπβ.

4.3 summary

  1. ζ \zeta ζ The smaller it is , The greater the overshoot , The less stable , The longer the adjustment time
  2. ζ \zeta ζ Too big , The system is slow to respond , The adjustment time is also long , Poor rapidity
  3. Usually take ζ \zeta ζ by 0.707
原网站

版权声明
本文为[Miracle Fan]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/208/202207271622023341.html