当前位置:网站首页>Performance analysis of continuous time systems (2) - second order system performance improvement methods PID, PR
Performance analysis of continuous time systems (2) - second order system performance improvement methods PID, PR
2022-07-27 19:04:00 【Miracle Fan】
Self control principle learning notes
Self control principle learning notes column
List of articles
4. Second order system performance improvement
4.1 P-Proportion

4.1.1 Open loop transfer function :
L ( s ) = K p w n 2 s ( s + 2 ζ w n ) L(s)=\frac{K_pw_n^2}{s(s+2\zeta w_n)} L(s)=s(s+2ζwn)Kpwn2
4.1.2 Closed loop transfer function of the system :
Φ ( s ) = Y ( s ) R ( s ) = K p w n 2 s 2 + 2 ζ w n s + K p w n 2 = w n p 2 s 2 + 2 ζ p w n p s + w n p 2 \Phi(s)=\frac{Y(s)}{R(s)}=\frac{K_pw_n^2}{s^2+2\zeta w_ns+K_pw_n^2}=\frac{w_{np}^2}{s^2+2\zeta_pw_{np}s+w_{np}^2} Φ(s)=R(s)Y(s)=s2+2ζwns+Kpwn2Kpwn2=s2+2ζpwnps+wnp2wnp2
4.1.3 Compare typical links
The real part of the characteristic root remains unchanged
Closed loop gain Φ ( s ) ∣ s = 0 = 1 \Phi(s)|_{s=0}=1 Φ(s)∣s=0=1 Don't change ; Open loop speed gain K = s 1 L ( s ) ∣ s = 0 = K p w n 2 ζ K=s^1L(s)|_{s=0}=\frac{K_pw_n}{2\zeta} K=s1L(s)∣s=0=2ζKpwn
Natural frequency w n p = K p w n w_{np}=\sqrt{K_p}w_n wnp=Kpwn
Damping coefficient ζ p = ζ / K p \zeta_p=\zeta/\sqrt{K_p} ζp=ζ/Kp
The adjustment time is basically unchanged
4.2 PD-Proportion Derivate

4.2.1 Open loop transfer function
L ( s ) = ( T d s + 1 ) w n 2 s ( s + 2 ζ w n ) L(s)=\frac{(T_ds+1) w_{n}^{2}}{ s\left(s+2\zeta w_{n}\right)} L(s)=s(s+2ζwn)(Tds+1)wn2
4.2.2 Closed loop transfer function
Φ ( s ) = Y ( s ) R ( s ) = w n 2 ( T d s + 1 ) s 2 + 2 ζ w n s + w n 2 T d s + w n 2 = w n 2 ( T d s + 1 ) s 2 + 2 ζ d w n s + w n 2 \Phi(s)=\frac{Y(s)}{R(s)}=\frac{w_n^2(T_ds+1)}{s^2+2\zeta w_ns+w_n^2T_ds+w_n^2}=\frac{w_{n}^2(T_ds+1)}{s^2+2\zeta_dw_{n}s+w_{n}^2} Φ(s)=R(s)Y(s)=s2+2ζwns+wn2Tds+wn2wn2(Tds+1)=s2+2ζdwns+wn2wn2(Tds+1)
4.2.3 Compare typical links
The closed-loop gain is 1, The open-loop gain is K = w n 2 ζ K=\frac{w_n}{2\zeta} K=2ζwn
Natural frequencies do not change , The damping coefficient increases , Overshoot becomes smaller —— ζ d = ζ + T d w n 2 \zeta_d=\zeta+\frac{T_dw_n}{2} ζd=ζ+2Tdwn
The step response of the system is equivalent to adding an impulse response , The range is T d T_d Td times , Speed up the dynamic response of the system
Y ( s ) = w n 2 s 2 + 2 ζ d w n s + w n 2 ∗ 1 s + w n 2 ⋅ T d s 2 + 2 ζ d w n s + w n 2 Y(s)=\frac{w_{n}^2}{s^2+2\zeta_dw_{n}s+w_{n}^2}*\frac{1}{s}+\frac{w_{n}^2 \cdot T_d}{s^2+2\zeta_dw_{n}s+w_{n}^2} Y(s)=s2+2ζdwns+wn2wn2∗s1+s2+2ζdwns+wn2wn2⋅Td
4.2.4 Qualitative conclusion
- Increase the system resistance ratio , It does not affect the natural frequency of the system , So as to suppress the oscillation , Reduce overshoot , Improve system stability .
- Zero appears , Speed up the response of the system
- Differential has amplification effect on high-frequency noise , When the input noise is high , Do not use
4.3 PI-Proportion Integral

4.3.1 Open loop transfer function
L ( s ) = ( T i s + 1 ) w n 2 T i s 2 ( s + 2 ζ w n ) L(s)=\frac{(T_is+1) w_{n}^{2}}{T_{i} s^{2}\left(s+2\zeta w_{n}\right)} L(s)=Tis2(s+2ζwn)(Tis+1)wn2
4.3.2 Closed loop transfer function
Y ( s ) R ( s ) = ω n 2 ( T i s + 1 ) T i s 3 + 2 T i ζ ω n s 2 + T i ω n 2 s + ω n 2 Y ( s ) D ( s ) = ω n 2 T i s T i s 3 + 2 T i ζ ω n s 2 + T i ω n 2 s + ω n 2 \frac{Y(s)}{R(s)}=\frac{\omega_{\mathrm{n}}^{2}\left(T_{\mathrm{i}} s+1\right)}{T_{\mathrm{i}} s^{3}+2 T_{\mathrm{i}} \zeta \omega_{\mathrm{n}} s^{2}+T_{\mathrm{i}} \omega_{\mathrm{n}}{ }^{2} s+\omega_{\mathrm{n}}^{2}}\\ \frac{Y(s)}{D(s)}=\frac{\omega_{\mathrm{n}}^{2} T_{\mathrm{i}} s}{T_{\mathrm{i}} s^{3}+2 T_{\mathrm{i}} \zeta \omega_{\mathrm{n}} s^{2}+T_{\mathrm{i}} \omega_{\mathrm{n}}{ }^{2} s+\omega_{\mathrm{n}}^{2}} R(s)Y(s)=Tis3+2Tiζωns2+Tiωn2s+ωn2ωn2(Tis+1)D(s)Y(s)=Tis3+2Tiζωns2+Tiωn2s+ωn2ωn2Tis
4.3.3 Compare typical links
- Given the closed-loop position gain to the output is 1
- The open-loop acceleration gain is K = s 2 L ( s ) ∣ s = 0 = w n 2 ζ T i K=s^2L(s)|_{s=0}=\frac{w_n}{2\zeta T_i} K=s2L(s)∣s=0=2ζTiwn
- The static gain of disturbance to output transfer function is 0
- The order of the system is determined by 1 Step becomes 2 rank
4.3.4 Qualitative conclusion
- The order of the system rises , Improper selection of parameters may cause RHP pole
- Introduce the integral link , Eliminate the error caused by constant value disturbance
- The integration link reduces the response speed , The overshoot may be increased at the initial stage of response
4.4 PID-Proportion Integral Derivate

4.4.1 Open loop transfer function
L ( s ) = ( T i T d s 2 + T i s 1 ) w n 2 T i s 2 ( s + 2 ζ w n ) L(s)=\frac{(T_iT_ds^2+T_is1) w_{n}^{2}}{T_{i} s^{2}\left(s+2\zeta w_{n}\right)} L(s)=Tis2(s+2ζwn)(TiTds2+Tis1)wn2
4.4.2 Closed loop transfer function
Y ( s ) R ( s ) = T d T i ω n 2 s 2 + T i ω n 2 s + ω n 2 T i s 3 + ( 2 T i ζ ω n + T d T i ω n 2 ) s 2 + T i ω n 2 s + ω n 2 Y ( s ) D ( s ) = ω n 2 T i s T i s 3 + ( 2 T i ζ ω n + T d T i ω n 2 ) s 2 + T i ω n 2 s + ω n 2 \frac{Y(s)}{R(s)}=\frac{T_{\mathrm{d}} T_{\mathrm{i}} \omega_{\mathrm{n}}^{2} s^{2}+T_{\mathrm{i}} \omega_{\mathrm{n}}^{2} s+\omega_{\mathrm{n}}^{2}}{T_{\mathrm{i}} s^{3}+\left(2 T_{\mathrm{i}} \zeta \omega_{\mathrm{n}}+T_{\mathrm{d}} T_{\mathrm{i}} \omega_{\mathrm{n}}^{2}\right) s^{2}+T_{\mathrm{i}} \omega_{\mathrm{n}}^{2} s+\omega_{\mathrm{n}}^{2}}\\ \frac{Y(s)}{D(s)}=\frac{\omega_{\mathrm{n}}^{2} T_{\mathrm{i}} s}{T_{\mathrm{i}} s^{3}+\left(2 T_{\mathrm{i}} \zeta \omega_{\mathrm{n}}+T_{\mathrm{d}} T_{\mathrm{i}} \omega_{\mathrm{n}}^{2}\right) s^{2}+T_{\mathrm{i}} \omega_{\mathrm{n}}^{2} s+\omega_{\mathrm{n}}^{2}} R(s)Y(s)=Tis3+(2Tiζωn+TdTiωn2)s2+Tiωn2s+ωn2TdTiωn2s2+Tiωn2s+ωn2D(s)Y(s)=Tis3+(2Tiζωn+TdTiωn2)s2+Tiωn2s+ωn2ωn2Tis
4.4.3 Compare typical links
- Given the closed-loop position gain to the output is 1
- The open-loop acceleration gain is K = s 2 L ( s ) ∣ s = 0 = w n 2 ζ T i K=s^2L(s)|_{s=0}=\frac{w_n}{2\zeta T_i} K=s2L(s)∣s=0=2ζTiwn
- The static gain of disturbance to output transfer function is 0
- The order of the system is determined by 1 Step becomes 2 rank
4.4.4 Qualitative conclusion
- P—— Improve response speed ;I—— Eliminate steady-state errors ;D—— Appropriately speed up the transient response , Suppress overshoot
- Eliminate the error caused by constant value disturbance .
4.5 Differential feedback

4.5.1 Open loop transfer function :
L ( s ) = ω n 2 s ( 2 ζ ω n + k ω n 2 ) L(s)=\frac{\omega_{\mathrm{n}}^{2}}{s\left(2 \zeta \omega_{\mathrm{n}}+k \omega_{\mathrm{n}}{ }^{2}\right) } L(s)=s(2ζωn+kωn2)ωn2
4.5.2 Closed loop transfer function :
Y ( s ) R ( s ) = ω n 2 s 2 + ( 2 ζ ω n + k ω n 2 ) s + ω n 2 \frac{Y(s)}{R(s)}=\frac{\omega_{\mathrm{n}}^{2}}{s^{2}+\left(2 \zeta \omega_{\mathrm{n}}+k \omega_{\mathrm{n}}{ }^{2}\right) s+\omega_{\mathrm{n}}^{2}} R(s)Y(s)=s2+(2ζωn+kωn2)s+ωn2ωn2
4.5.3 Compare typical links
- The closed-loop position gain is 1
- The open-loop speed gain is reduced to K = w n 2 2 ζ w n + k w n 2 K=\frac{w_n^2}{2\zeta w_n+kw_n^2} K=2ζwn+kwn2wn2
- The natural frequency remains unchanged
- The damping coefficient increases ζ d f = ζ + 1 2 k w n \zeta_{df}=\zeta+\frac{1}{2}kw_n ζdf=ζ+21kwn
4.4.5 Qualitative conclusion
- Does not affect natural frequency , Increase the damping ratio of the system , Reduce overshoot
- Reduce the open-loop gain , Increase the steady-state error of system slope input
- No closed-loop zero , The output stability is better than PD Adjust the
边栏推荐
猜你喜欢

Jmeter接口自动化-如何解决请求头Content-Type冲突问题

Mini washing machine touch chip dlt8ma12ts Jericho

MySQL 01 relational database design

MySQL 05 stored procedure

Big enemies, how to correctly choose the intended enterprises in the new testing industry?

Unity学习笔记(实现传送带)

During the interface test, connect to the database and back up, restore and verify the data source

MySQL 02 初体验

订单超时取消 及 按类别查询商品

Unity学习笔记(刚体-物理-碰撞器-触发器)
随机推荐
连续时间系统的性能分析(1)-控制系统性能指标及一二阶分析
专项测试之「 性能测试」总结
MySQL 05 存储过程
商品推荐和分类商品推荐
Aircraft battle with enemy aircraft
收下这份实操案例,还怕不会用Jmeter接口测试工具
个人中心--订单业务流程
Sentinel1.8.4 persistent Nacos configuration
[wechat applet] project practice - lottery application
Household mute mosquito repellent lamp chip-dltap703sd-jericho
npm 基本使用
Redis注解
Selenium自动化测试面试题全家桶
Useful resources for ns2
normal distribution, lognormal distribution,正态随机数的生成
Hash、Set、List、Zset、BitMap、Scan
Kinect for Unity3d----KinectManager
模仿线程扣除
Valueerror: found input variables with inconsistent numbers of samples: [80019456, 26673152] [error reporting]
Typescript installation