当前位置:网站首页>About Equilibrium - Simplified bottleneck model

About Equilibrium - Simplified bottleneck model

2022-06-25 17:39:00 Sunshing15

Model assumptions and scenario brief

   Travelers choose their own departure time to minimize their travel cost during the peak travel period , From the place of departure to the destination .

  1. It is assumed that there are a fixed number of travelers during the peak travel period ( Such as morning rush hour ) Want to drive from the same starting point to the same destination ( Users in the same residential area have the travel demand to the same work area ).
  2. Assume that during peak hours , The road capacity of the travel road is insufficient to meet the travel needs of travelers , That is, there must be a period of road congestion .
  3. Suppose there is only one road between the starting point and the destination .
  4. Suppose all travelers drive at the same speed , All travelers have the same time value , Early arrivals to the work area 、 Late value ( It is assumed here that the perceived utility of travelers at home is higher than that at work , There will be a penalty for being late ).
  5. The number of vehicles per unit time on the travel road is fixed , That is, the unit time service rate of the travel road is a fixed value ( It is not considered that there are travel faults on the travel road , Such as rear end collision , Bad weather, etc ).
    Travel scenario As shown below :
     Insert picture description here
    Early arrival and late arrival explain
    Schematic diagram of early travelers : Take the first traveler for example
     Insert picture description here

Schematic diagram of late travelers : Take the last traveler as an example
 Insert picture description here

Symbol definition

For the convenience of the later model description , Here we first define the symbols needed in the article :

N        N~~~~~~ N      : Total number of trips during the study period
α         \alpha~~~~~~~ α       : The traveler's unit time value ( Unit such as : element / Hours )
β        \beta~~~~~~ β       : Unit early arrival cost
γ        \gamma~~~~~~ γ       : Unit late cost
t         t~~~~~~~ t        : The departure time of the traveler
T ( t )    T(t)~~ T(t)  : Travelers in t t t Total travel time of departure and arrival at destination at any time
D ( t ) D(t) D(t) t t t The queue length on the road at any time ( Cumulative number of vehicles )
s        s~~~~~~ s       : The number of vehicles per unit on the road ( The service rate of the travel road )
r ( t )    r(t)~~ r(t)   t t t The departure rate of travelers at any time
c ( t )    c(t)~~ c(t)   t t t The total travel cost of travelers departing at any time
t q b      t_{qb}~~~~ tqb    : The moment when queues begin to form on the road
t q e      t_{qe}~~~~ tqe    : The moment when the queue dissipates on the road
t ∗       t^*~~~~~ t     : When you expect to arrive at your destination
t ~        \tilde{t}~~~~~~ t~      : The departure time that can arrive at the expected time

Travelers in t t t Time total travel time from departure to destination T ( t ) T(t) T(t) Can be expressed as
                                                    T ( t ) = T 0 + T v ( t ) ,                                                           ( 1 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~T(t) = T_0 + T^v(t) , ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (1)                                                    T(t)=T0+Tv(t),                                                         (1) among , T 0 T_0 T0 Is a fixed constant , It indicates the travel time of the traveler from the starting place to the destination when there is no vehicle queue . When the traffic capacity of the travel road is insufficient to meet the travel needs of travelers ( namely r ( t ) > s r(t)>s r(t)>s) when , Cumulative vehicle queues will be generated on the travel road . T v ( t ) T^v(t) Tv(t) by t t t The time for travelers to queue up on the road , T v ( t ) T^v(t) Tv(t) It can be mathematically expressed as
                                               T v ( t ) = D ( t ) s ,                                                                       ( 2 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~T^v(t) = \frac{D(t)}{s}, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (2)                                               Tv(t)=sD(t),                                                                     (2) On the road t t t The number of travel vehicles accumulated at any time shall be as of t t t The number of vehicles entering the road at any time minus the total number of vehicles leaving , namely
                                  D ( t ) = ∫ t q b t r ( u ) d u − s ( t − t q b ) ,                                                       ( 3 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~D(t) = \int_{t_{qb}}^tr(u)du - s(t - t_{qb}) , ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (3)                                  D(t)=tqbtr(u)dus(ttqb),                                                     (3) The cumulative number of vehicles on the unit trip road is
                                            D ˙ ( t ) = r ( t ) − s .                                                                        ( 4 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\dot{D}(t) = r(t)-s. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (4)                                            D˙(t)=r(t)s.                                                                      (4) The total travel cost of travelers is the sum of the travel time cost of travelers and the utility cost of travelers arriving early or late , The mathematical representation is :
             c ( t ) = α T ( t ) + β m a x { 0 , t ∗ − t − T ( t ) } + γ m a x { 0 , t + T ( t ) − t ∗ } .                  ( 5 ) ~~~~~~~~~~~~ c(t) = \alpha T(t)+ \beta max\{0, t^*-t-T(t)\}+\gamma max\{0, t+T(t)-t^*\}.~~~~~~~~~~~~~~~~(5)             c(t)=αT(t)+βmax{ 0,ttT(t)}+γmax{ 0,t+T(t)t}.                (5) Empirical experience shows that γ > α > β \gamma>\alpha>\beta γ>α>β.

Bottleneck model Nash equilibrium

Equilibrium conditions : No traveler can reduce the travel cost by changing their departure time .

Travelers' travel results are early or late , Under different travel results , The travel cost is expressed in different forms . because T 0 T_0 T0 Is a fixed constant , It doesn't work for subsequent analysis , For the sake of simplicity , Set up T 0 = 0 T_0=0 T0=0. Suppose the traveler starts from the starting point and directly enters the bottleneck section .

The departure rate of early travelers

For early travelers , m a x { 0 , t ∗ − t − T ( t ) } = t ∗ − t − T ( t ) max\{0, t^*-t-T(t)\}=t^*-t-T(t) max{ 0,ttT(t)}=ttT(t), m a x { 0 , t + T ( t ) − t ∗ } = 0 max\{0, t+T(t)-t^*\}=0 max{ 0,t+T(t)t}=0, The formula (5) It can be specifically expressed as
                                         c ( t ) = α T ( t ) + β ( t ∗ − t − T ( t ) ) .                                                     ( 6 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ c(t) = \alpha T(t)+ \beta( t^*-t-T(t)).~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(6)                                         c(t)=αT(t)+β(ttT(t)).                                                   (6) When equilibrium is reached , The traveler changes the departure time , Travel costs will not change again , So in equilibrium there is
d c ( t ) d t = 0 \frac{dc(t)}{dt}=0 dtdc(t)=0
The specific derivation process is :
c ˙ ( t ) = α T ˙ ( t ) − β − β T ˙ ( t ) = α s D ˙ ( t ) − β − β s D ˙ ( t ) = α − β s ( r ( t ) − s ) − β = 0 \begin{aligned} \dot{c}(t)& =\alpha \dot{T}(t) -\beta - \beta \dot{T}(t)\\ & =\frac{\alpha}{s} \dot{D}(t) -\beta - \frac{\beta}{s} \dot{D}(t) \\ & =\frac{\alpha-\beta}{s} (r(t)-s) -\beta \\ & = 0 \end{aligned} c˙(t)=αT˙(t)ββT˙(t)=sαD˙(t)βsβD˙(t)=sαβ(r(t)s)β=0 Thus, the equilibrium departure rate can be obtained r ∗ ( t ) r^*(t) r(t) by
                                                                 r ∗ ( t ) = s + β s α − β                                                         ( 7 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r^*(t) = s+\frac{\beta s}{\alpha-\beta}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(7)                                                                 r(t)=s+αββs                                                       (7)

The departure rate of late travelers

For late travelers , m a x { 0 , t ∗ − t − T ( t ) } = 0 max\{0, t^*-t-T(t)\}=0 max{ 0,ttT(t)}=0, m a x { 0 , t + T ( t ) − t ∗ } = t + T ( t ) − t ∗ max\{0, t+T(t)-t^*\}=t+T(t)-t^* max{ 0,t+T(t)t}=t+T(t)t, The formula (5) It can be specifically expressed as
                                                c ( t ) = α T ( t ) + γ ( t + T ( t ) − t ∗ ) .                                                 ( 8 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ c(t) = \alpha T(t)+ \gamma (t+T(t)-t^*).~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(8)                                                c(t)=αT(t)+γ(t+T(t)t).                                               (8)
It is similar to the derivation process of the equilibrium departure rate of early travelers , We can know the equilibrium departure rate of late arrival r ∗ ( t ) r^*(t) r(t) by
                                                                 r ∗ ( t ) = s − γ s α + γ                                                         ( 9 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r^*(t) = s-\frac{\gamma s}{\alpha+\gamma}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(9)                                                                 r(t)=sα+γγs                                                       (9)

Queue formation time and dispersion under the condition of equilibrium departure rate , Calculate the departure time according to the expected time

In the above simple bottleneck model, the cumulative departure and arrival conditions are shown in the following figure :
 Insert picture description here
among B B B The point is that the last early traveler can be on time at the expected time t ∗ t^* t terminus ad quem , The total waiting time is BC The length of the line segment . At the moment t ~ \tilde{t} t~ Travelers only have waiting time and no utility cost of being late or leaving early .
Whether you arrive early or late , The total number of travelers is N N N, The total length of the formed queue is equal to the total length of the dispersed queue , And t ~ \tilde{t} t~ Time is defined as from t ~ \tilde{t} t~ Set out at all times , Just in time to arrive at the destination , Then there are

                                                ( t ~ − t q b ) ( s + β s α − β ) + ( t q e − t ~ ) ( s − γ s α + γ ) = N                                            ( 10.1 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(\tilde{t}-t_{qb})(s+\frac{\beta s}{\alpha-\beta})+(t_{qe}-\tilde{t})(s-\frac{\gamma s}{\alpha+\gamma})=N~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(10.1)                                                (t~tqb)(s+αββs)+(tqet~)(sα+γγs)=N                                          (10.1)                                                 ( t ~ − t q b ) β s α − β = ( t q e − t ~ ) γ s α + γ                                                                        ( 10.2 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(\tilde{t}-t_{qb})\frac{\beta s}{\alpha-\beta}=(t_{qe}-\tilde{t})\frac{\gamma s}{\alpha+\gamma}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(10.2)                                                (t~tqb)αββs=(tqet~)α+γγs                                                                      (10.2)                                                          t ~ + β α − β ( t ~ − t q b ) = t ∗                                                                              ( 10.3 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\tilde{t}+\frac{\beta}{\alpha-\beta}(\tilde{t}-t_{qb})=t^*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(10.3)                                                         t~+αββ(t~tqb)=t                                                                            (10.3)
among
The formula (10.1) Indicates that the total number of travelers who can arrive early plus travelers who will arrive late is N N N;
The formula (10.2) It means that t ~ \tilde{t} t~ The maximum queue length is reached at any time , The length of the formed queue should be equal to the length of the dispersed queue ;
The formula (10.3) It means that t ~ \tilde{t} t~ To go through a period of waiting time , Just arrived at the destination .
stay t ~ \tilde{t} t~ The total number of vehicles entering at any time is ( s + β s α − β ) ( t ~ − t q b ) (s+\frac{\beta s}{\alpha-\beta})(\tilde{t}-t_{qb}) (s+αββs)(t~tqb), The total number of vehicles driven out is s ( t ~ − t q b ) s(\tilde{t}-t_{qb}) s(t~tqb), Therefore, the accumulated number of vehicles D ( t ~ ) = ( s + β s α − β ) ( t ~ − t q b ) − s ( t ~ − t q b ) = β s α − β ( t ~ − t q b ) D(\tilde{t})=(s+\frac{\beta s}{\alpha-\beta})(\tilde{t}-t_{qb})-s(\tilde{t}-t_{qb})=\frac{\beta s}{\alpha-\beta}(\tilde{t}-t_{qb}) D(t~)=(s+αββs)(t~tqb)s(t~tqb)=αββs(t~tqb)
Then the waiting time T v ( t ) = D ( t ~ ) s = β α − β ( t ~ − t q b ) , T^v(t)=\frac{D(\tilde{t})}{s}=\frac{\beta}{\alpha-\beta}(\tilde{t}-t_{qb}), Tv(t)=sD(t~)=αββ(t~tqb), There's a formula (10.3) establish . The simultaneous formula (10.1)-(10.3) It can be solved
                                                              t q b = t ∗ − ( γ β + γ ) ( N s )                                                                         ( 11.1 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t_{qb}=t^*-(\frac{\gamma}{\beta+\gamma})(\frac{N}{s})~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(11.1)                                                              tqb=t(β+γγ)(sN)                                                                       (11.1)                                                              t q e = t ∗ + ( γ β + γ ) ( N s )                                                                          ( 11.2 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t_{qe}=t^*+(\frac{\gamma}{\beta+\gamma})(\frac{N}{s})~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(11.2)                                                             tqe=t+(β+γγ)(sN)                                                                        (11.2)                                                           t ~ = t ∗ − ( β γ α ( β + γ ) ) ( N s )                                                                           ( 11.3 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\tilde{t}=t^*-(\frac{\beta \gamma}{\alpha(\beta+\gamma)})(\frac{N}{s})~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(11.3)                                                          t~=t(α(β+γ)βγ)(sN)                                                                         (11.3)

The equilibrium travel cost of travelers

Due to the arbitrariness of the traveler in the above expression , Therefore, the travel cost of all travelers is the same when the equilibrium state is reached , Take the travelers at the head of the queue as an example , At the moment t q b t_{qb} tqb set out , Because it's in front of the queue , So it didn't go through the bottleneck period , Therefore, the waiting time is 0, The travel cost is only the utility cost of arriving early , namely
                                                                  c ( t ) = β ( t ∗ − t q b ) .                                                                                 ( 12 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c(t) = \beta( t^*-t_{qb}).~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(12)                                                                  c(t)=β(ttqb).                                                                               (12) Bring in the formula (11.1) The equilibrium travel cost is
                                                                  c ∗ ( t ) = ( β γ β + γ ) ( N s ) .                                                                            ( 13 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c^*(t) = (\frac{\beta\gamma}{\beta+\gamma})(\frac{N}{s}).~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(13)                                                                  c(t)=(β+γβγ)(sN).                                                                          (13)

原网站

版权声明
本文为[Sunshing15]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/176/202206251719138523.html