当前位置:网站首页>About Equilibrium - Simplified bottleneck model
About Equilibrium - Simplified bottleneck model
2022-06-25 17:39:00 【Sunshing15】
List of articles
Model assumptions and scenario brief
Travelers choose their own departure time to minimize their travel cost during the peak travel period , From the place of departure to the destination .
- It is assumed that there are a fixed number of travelers during the peak travel period ( Such as morning rush hour ) Want to drive from the same starting point to the same destination ( Users in the same residential area have the travel demand to the same work area ).
- Assume that during peak hours , The road capacity of the travel road is insufficient to meet the travel needs of travelers , That is, there must be a period of road congestion .
- Suppose there is only one road between the starting point and the destination .
- Suppose all travelers drive at the same speed , All travelers have the same time value , Early arrivals to the work area 、 Late value ( It is assumed here that the perceived utility of travelers at home is higher than that at work , There will be a penalty for being late ).
- The number of vehicles per unit time on the travel road is fixed , That is, the unit time service rate of the travel road is a fixed value ( It is not considered that there are travel faults on the travel road , Such as rear end collision , Bad weather, etc ).
Travel scenario As shown below :
Early arrival and late arrival explain
Schematic diagram of early travelers : Take the first traveler for example
Schematic diagram of late travelers : Take the last traveler as an example 
Symbol definition
For the convenience of the later model description , Here we first define the symbols needed in the article :
N N~~~~~~ N : Total number of trips during the study period
α \alpha~~~~~~~ α : The traveler's unit time value ( Unit such as : element / Hours )
β \beta~~~~~~ β : Unit early arrival cost
γ \gamma~~~~~~ γ : Unit late cost
t t~~~~~~~ t : The departure time of the traveler
T ( t ) T(t)~~ T(t) : Travelers in t t t Total travel time of departure and arrival at destination at any time
D ( t ) D(t) D(t) : t t t The queue length on the road at any time ( Cumulative number of vehicles )
s s~~~~~~ s : The number of vehicles per unit on the road ( The service rate of the travel road )
r ( t ) r(t)~~ r(t) : t t t The departure rate of travelers at any time
c ( t ) c(t)~~ c(t) : t t t The total travel cost of travelers departing at any time
t q b t_{qb}~~~~ tqb : The moment when queues begin to form on the road
t q e t_{qe}~~~~ tqe : The moment when the queue dissipates on the road
t ∗ t^*~~~~~ t∗ : When you expect to arrive at your destination
t ~ \tilde{t}~~~~~~ t~ : The departure time that can arrive at the expected time
Travelers in t t t Time total travel time from departure to destination T ( t ) T(t) T(t) Can be expressed as
T ( t ) = T 0 + T v ( t ) , ( 1 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~T(t) = T_0 + T^v(t) , ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (1) T(t)=T0+Tv(t), (1) among , T 0 T_0 T0 Is a fixed constant , It indicates the travel time of the traveler from the starting place to the destination when there is no vehicle queue . When the traffic capacity of the travel road is insufficient to meet the travel needs of travelers ( namely r ( t ) > s r(t)>s r(t)>s) when , Cumulative vehicle queues will be generated on the travel road . T v ( t ) T^v(t) Tv(t) by t t t The time for travelers to queue up on the road , T v ( t ) T^v(t) Tv(t) It can be mathematically expressed as
T v ( t ) = D ( t ) s , ( 2 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~T^v(t) = \frac{D(t)}{s}, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (2) Tv(t)=sD(t), (2) On the road t t t The number of travel vehicles accumulated at any time shall be as of t t t The number of vehicles entering the road at any time minus the total number of vehicles leaving , namely
D ( t ) = ∫ t q b t r ( u ) d u − s ( t − t q b ) , ( 3 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~D(t) = \int_{t_{qb}}^tr(u)du - s(t - t_{qb}) , ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (3) D(t)=∫tqbtr(u)du−s(t−tqb), (3) The cumulative number of vehicles on the unit trip road is
D ˙ ( t ) = r ( t ) − s . ( 4 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\dot{D}(t) = r(t)-s. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (4) D˙(t)=r(t)−s. (4) The total travel cost of travelers is the sum of the travel time cost of travelers and the utility cost of travelers arriving early or late , The mathematical representation is :
c ( t ) = α T ( t ) + β m a x { 0 , t ∗ − t − T ( t ) } + γ m a x { 0 , t + T ( t ) − t ∗ } . ( 5 ) ~~~~~~~~~~~~ c(t) = \alpha T(t)+ \beta max\{0, t^*-t-T(t)\}+\gamma max\{0, t+T(t)-t^*\}.~~~~~~~~~~~~~~~~(5) c(t)=αT(t)+βmax{ 0,t∗−t−T(t)}+γmax{ 0,t+T(t)−t∗}. (5) Empirical experience shows that γ > α > β \gamma>\alpha>\beta γ>α>β.
Bottleneck model Nash equilibrium
Equilibrium conditions : No traveler can reduce the travel cost by changing their departure time .
Travelers' travel results are early or late , Under different travel results , The travel cost is expressed in different forms . because T 0 T_0 T0 Is a fixed constant , It doesn't work for subsequent analysis , For the sake of simplicity , Set up T 0 = 0 T_0=0 T0=0. Suppose the traveler starts from the starting point and directly enters the bottleneck section .
The departure rate of early travelers
For early travelers , m a x { 0 , t ∗ − t − T ( t ) } = t ∗ − t − T ( t ) max\{0, t^*-t-T(t)\}=t^*-t-T(t) max{ 0,t∗−t−T(t)}=t∗−t−T(t), m a x { 0 , t + T ( t ) − t ∗ } = 0 max\{0, t+T(t)-t^*\}=0 max{ 0,t+T(t)−t∗}=0, The formula (5) It can be specifically expressed as
c ( t ) = α T ( t ) + β ( t ∗ − t − T ( t ) ) . ( 6 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ c(t) = \alpha T(t)+ \beta( t^*-t-T(t)).~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(6) c(t)=αT(t)+β(t∗−t−T(t)). (6) When equilibrium is reached , The traveler changes the departure time , Travel costs will not change again , So in equilibrium there is
d c ( t ) d t = 0 \frac{dc(t)}{dt}=0 dtdc(t)=0
The specific derivation process is :
c ˙ ( t ) = α T ˙ ( t ) − β − β T ˙ ( t ) = α s D ˙ ( t ) − β − β s D ˙ ( t ) = α − β s ( r ( t ) − s ) − β = 0 \begin{aligned} \dot{c}(t)& =\alpha \dot{T}(t) -\beta - \beta \dot{T}(t)\\ & =\frac{\alpha}{s} \dot{D}(t) -\beta - \frac{\beta}{s} \dot{D}(t) \\ & =\frac{\alpha-\beta}{s} (r(t)-s) -\beta \\ & = 0 \end{aligned} c˙(t)=αT˙(t)−β−βT˙(t)=sαD˙(t)−β−sβD˙(t)=sα−β(r(t)−s)−β=0 Thus, the equilibrium departure rate can be obtained r ∗ ( t ) r^*(t) r∗(t) by
r ∗ ( t ) = s + β s α − β ( 7 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r^*(t) = s+\frac{\beta s}{\alpha-\beta}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(7) r∗(t)=s+α−ββs (7)
The departure rate of late travelers
For late travelers , m a x { 0 , t ∗ − t − T ( t ) } = 0 max\{0, t^*-t-T(t)\}=0 max{ 0,t∗−t−T(t)}=0, m a x { 0 , t + T ( t ) − t ∗ } = t + T ( t ) − t ∗ max\{0, t+T(t)-t^*\}=t+T(t)-t^* max{ 0,t+T(t)−t∗}=t+T(t)−t∗, The formula (5) It can be specifically expressed as
c ( t ) = α T ( t ) + γ ( t + T ( t ) − t ∗ ) . ( 8 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ c(t) = \alpha T(t)+ \gamma (t+T(t)-t^*).~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(8) c(t)=αT(t)+γ(t+T(t)−t∗). (8)
It is similar to the derivation process of the equilibrium departure rate of early travelers , We can know the equilibrium departure rate of late arrival r ∗ ( t ) r^*(t) r∗(t) by
r ∗ ( t ) = s − γ s α + γ ( 9 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r^*(t) = s-\frac{\gamma s}{\alpha+\gamma}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(9) r∗(t)=s−α+γγs (9)
Queue formation time and dispersion under the condition of equilibrium departure rate , Calculate the departure time according to the expected time
In the above simple bottleneck model, the cumulative departure and arrival conditions are shown in the following figure :
among B B B The point is that the last early traveler can be on time at the expected time t ∗ t^* t∗ terminus ad quem , The total waiting time is BC The length of the line segment . At the moment t ~ \tilde{t} t~ Travelers only have waiting time and no utility cost of being late or leaving early .
Whether you arrive early or late , The total number of travelers is N N N, The total length of the formed queue is equal to the total length of the dispersed queue , And t ~ \tilde{t} t~ Time is defined as from t ~ \tilde{t} t~ Set out at all times , Just in time to arrive at the destination , Then there are
( t ~ − t q b ) ( s + β s α − β ) + ( t q e − t ~ ) ( s − γ s α + γ ) = N ( 10.1 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(\tilde{t}-t_{qb})(s+\frac{\beta s}{\alpha-\beta})+(t_{qe}-\tilde{t})(s-\frac{\gamma s}{\alpha+\gamma})=N~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(10.1) (t~−tqb)(s+α−ββs)+(tqe−t~)(s−α+γγs)=N (10.1) ( t ~ − t q b ) β s α − β = ( t q e − t ~ ) γ s α + γ ( 10.2 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(\tilde{t}-t_{qb})\frac{\beta s}{\alpha-\beta}=(t_{qe}-\tilde{t})\frac{\gamma s}{\alpha+\gamma}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(10.2) (t~−tqb)α−ββs=(tqe−t~)α+γγs (10.2) t ~ + β α − β ( t ~ − t q b ) = t ∗ ( 10.3 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\tilde{t}+\frac{\beta}{\alpha-\beta}(\tilde{t}-t_{qb})=t^*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(10.3) t~+α−ββ(t~−tqb)=t∗ (10.3)
among
The formula (10.1) Indicates that the total number of travelers who can arrive early plus travelers who will arrive late is N N N;
The formula (10.2) It means that t ~ \tilde{t} t~ The maximum queue length is reached at any time , The length of the formed queue should be equal to the length of the dispersed queue ;
The formula (10.3) It means that t ~ \tilde{t} t~ To go through a period of waiting time , Just arrived at the destination .
stay t ~ \tilde{t} t~ The total number of vehicles entering at any time is ( s + β s α − β ) ( t ~ − t q b ) (s+\frac{\beta s}{\alpha-\beta})(\tilde{t}-t_{qb}) (s+α−ββs)(t~−tqb), The total number of vehicles driven out is s ( t ~ − t q b ) s(\tilde{t}-t_{qb}) s(t~−tqb), Therefore, the accumulated number of vehicles D ( t ~ ) = ( s + β s α − β ) ( t ~ − t q b ) − s ( t ~ − t q b ) = β s α − β ( t ~ − t q b ) D(\tilde{t})=(s+\frac{\beta s}{\alpha-\beta})(\tilde{t}-t_{qb})-s(\tilde{t}-t_{qb})=\frac{\beta s}{\alpha-\beta}(\tilde{t}-t_{qb}) D(t~)=(s+α−ββs)(t~−tqb)−s(t~−tqb)=α−ββs(t~−tqb)
Then the waiting time T v ( t ) = D ( t ~ ) s = β α − β ( t ~ − t q b ) , T^v(t)=\frac{D(\tilde{t})}{s}=\frac{\beta}{\alpha-\beta}(\tilde{t}-t_{qb}), Tv(t)=sD(t~)=α−ββ(t~−tqb), There's a formula (10.3) establish . The simultaneous formula (10.1)-(10.3) It can be solved
t q b = t ∗ − ( γ β + γ ) ( N s ) ( 11.1 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t_{qb}=t^*-(\frac{\gamma}{\beta+\gamma})(\frac{N}{s})~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(11.1) tqb=t∗−(β+γγ)(sN) (11.1) t q e = t ∗ + ( γ β + γ ) ( N s ) ( 11.2 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t_{qe}=t^*+(\frac{\gamma}{\beta+\gamma})(\frac{N}{s})~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(11.2) tqe=t∗+(β+γγ)(sN) (11.2) t ~ = t ∗ − ( β γ α ( β + γ ) ) ( N s ) ( 11.3 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\tilde{t}=t^*-(\frac{\beta \gamma}{\alpha(\beta+\gamma)})(\frac{N}{s})~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(11.3) t~=t∗−(α(β+γ)βγ)(sN) (11.3)
The equilibrium travel cost of travelers
Due to the arbitrariness of the traveler in the above expression , Therefore, the travel cost of all travelers is the same when the equilibrium state is reached , Take the travelers at the head of the queue as an example , At the moment t q b t_{qb} tqb set out , Because it's in front of the queue , So it didn't go through the bottleneck period , Therefore, the waiting time is 0, The travel cost is only the utility cost of arriving early , namely
c ( t ) = β ( t ∗ − t q b ) . ( 12 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c(t) = \beta( t^*-t_{qb}).~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(12) c(t)=β(t∗−tqb). (12) Bring in the formula (11.1) The equilibrium travel cost is
c ∗ ( t ) = ( β γ β + γ ) ( N s ) . ( 13 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~c^*(t) = (\frac{\beta\gamma}{\beta+\gamma})(\frac{N}{s}).~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(13) c∗(t)=(β+γβγ)(sN). (13)
边栏推荐
- 数据挖掘之时间序列分析[通俗易懂]
- 【Matlab】数据统计分析
- 大学生暑假换机热,ROG 明星产品幻 16 翻转版 / 幻 13 / 幻 X 预约
- win10安装cuda的操作步骤(不断完美中)
- 杰理之系统时钟设置出现复位或无效问题【篇】
- [matlab] curve fitting
- Distributed remote management of distribution room environment
- 【UVM实战 ===> Episode_2 】~ VIP、VIP的开发、VIP的发布
- 杰理之如何给外界输出一个时钟源使用【篇】
- How to solve the problem of network disconnection after enabling hotspot sharing in win10?
猜你喜欢

Redis distributed lock collation
![How Jerry used to output a clock source to the outside world [chapter]](/img/ea/161be6416726bcd80bb2823a5f6389.png)
How Jerry used to output a clock source to the outside world [chapter]

What are the steps for launching the mobile ERP system? It's important to keep it tight

使用DiskGenius拓展系统盘C盘的容量
![Precautions for the use of Jerry's wake-up mouth [chapter]](/img/01/3bfba9a486eb7fa3c0a888bb3ea2d2.png)
Precautions for the use of Jerry's wake-up mouth [chapter]

DDD concept is complex and difficult to understand. How to design code implementation model in practice?

通过深度可分离卷积神经网络对七种表情进行区分

WARNING: Unsupported upgrade request.

Uncover ges super large scale graph computing engine hyg: Graph Segmentation

Langage d'assemblage (5) Registre (accès à la mémoire)
随机推荐
【UVM实战 ===> Episode_2 】~ VIP、VIP的开发、VIP的发布
DDD concept is complex and difficult to understand. How to design code implementation model in practice?
Sentinel哨兵机制
[matlab] data statistical analysis
Mobx学习之路----强大的“状态管理工具”
十大证券公司哪个佣金最低 办理开户安全吗
用连续自然数之和来表达整数
Remote terminal control artifact - mobaxterm
超全金屬PBR多通道貼圖素材網站整理
用户调度问题
ES6 knowledge points
ES6知识点
The role of the project manager in the project
Jericho's method of obtaining reset source and wakeup IO port [chapter]
Uncover ges super large scale graph computing engine hyg: Graph Segmentation
【UVM实战 ===> Episode_1 】~ MCDF设计更新、AMBA标准接口、UVM验证环境更新
conda安装的py3.6和py3.7
How Jerry used to output a clock source to the outside world [chapter]
为什么在变频器场合需要安科瑞的电力有源滤波器?
什么是公链开发?公链开发项目有哪些?