当前位置:网站首页>The use of DDR3 (Naive) in Xilinx VIVADO (2) Read and write design

The use of DDR3 (Naive) in Xilinx VIVADO (2) Read and write design

2022-08-04 11:13:00 chylinne

1、概述

        本文基于 Xilinx VIVADO 2018.3 调用的 DDR3 IP 核(Memory Interface Generator, MIG 7 Series),针对 Xilinx 定义的 app 接口(Naive),Design the read-write module state machine,并用 Verilog 进行实现.

2、Read and write state machine design

        The function we designed the read-write test module is expected to achieve:

      (1)Write a certain amount of data(可设置,默认 512 个)到 DDR3,Write address from 0 开始.

      (2)从地址 0 Write before starting to read DDR3 的数据,Simultaneous judgment reading、Whether the write data is consistent.

      (3)Cycle through the previous two steps,即写、读、写、读 ......

        因此,状态机很简单,我们可以设置如下 4 个状态,Its state transition rules are shown in the figure above.

        IDLE:初始状态,等 MIG IP After the core initialization is completed, it jumps to the write data state WRITE.

        WRITE:写数据状态,in this state MIG IP The core writes a certain amount of data(测试为 512 个).When the last data is written,Synchronous jump to wait state WAIT.

        WAIT:过渡状态,Only one clock cycle is maintained.

        READ:读数据状态,In this state from MIG IP The core reads a certain amount of data(测试为 512 个).when the last data is read,Synchronously jump to the initial state IDLE.Start a new round of writing、读过程.

        上一篇文章说到,在 Xilinx 定义的 app 接口(Naive)模式下,DDR3 There are three scenarios when writing data,This test uses the scenario where the write command and the write data occur on the same clock cycle,This will make coding much easier,But a little bit of efficiency is sacrificed accordingly(不会造成多大的影响).

3、代码实现

        The complete read-write module test code is as follows:

module ddr3_rw # ( 
	parameter integer  WR_LEN      = 512,
	parameter integer  DATA_WIDTH  = 128,  //8 times 16 equals 128 bits
	parameter integer  ADDR_WIDTH  = 28
)(    
    input                   		ui_clk,
    input                   		ui_clk_sync_rst	,
    input                   		init_calib_complete,

    input                   		app_rdy,
    input                   		app_wdf_rdy,
    input                   		app_rd_data_valid,
    input       [DATA_WIDTH - 1:0]  app_rd_data,
    output reg  [ADDR_WIDTH - 1:0]	app_addr,                  
    output	                		app_en,
    output	                		app_wdf_wren,
    output	                		app_wdf_end,
    output	    [2:0]     			app_cmd,
    output reg  [DATA_WIDTH - 1:0]	app_wdf_data,

    output reg             			error_flag
);
			
localparam  IDLE   = 4'b0001;
localparam  WRITE  = 4'b0010;
localparam  WAIT   = 4'b0100;
localparam  READ   = 4'b1000;

reg	 [3:0]				cur_state;
reg	 [3:0]				next_state;
reg	 [ADDR_WIDTH - 1:0]	rd_addr_cnt;
reg	 [ADDR_WIDTH - 1:0]	wr_addr_cnt;
reg	 [ADDR_WIDTH - 1:0]	rd_cnt;
										
wire					error;
wire					rst_n;
wire					wr_proc;
wire					wr_last;
wire					rd_addr_last;

assign rst_n = ~ui_clk_sync_rst;
assign app_en = app_rdy && ((cur_state == WRITE && app_wdf_rdy) || cur_state == READ);
assign app_wdf_wren = (cur_state == WRITE) && wr_proc;
assign app_wdf_end = app_wdf_wren; 
assign app_cmd = (cur_state == READ) ? 3'd1 :3'd0;
assign wr_proc = ~app_cmd && app_rdy && app_wdf_rdy;
assign wr_last = app_wdf_wren && (wr_addr_cnt == WR_LEN - 1) ;
assign rd_addr_last = (rd_addr_cnt == WR_LEN - 1) && app_rdy && app_cmd;  

always @(posedge ui_clk or negedge rst_n)
begin
	if(~rst_n)
		cur_state <= IDLE;
	else
		cur_state <= next_state;
end

always @(*)
begin
	if(~rst_n)
		next_state = IDLE;
	else
		case(cur_state)
			IDLE:
				if(init_calib_complete) 
					next_state = WRITE;				
				else				
					next_state = IDLE;				
			WRITE:				
				if(wr_last)
					next_state = WAIT;				
				else				
					next_state = WRITE;							
			WAIT:				
					next_state = READ;				
			READ:				
				if(rd_addr_last)
					next_state = IDLE;
				else
					next_state = READ;					
			default:;
		endcase
end

always @(posedge ui_clk or negedge rst_n)
begin
    if(~rst_n)
    begin				 
        app_wdf_data <= 0;     
        wr_addr_cnt  <= 0;      
        rd_addr_cnt  <= 0;       
        app_addr     <= 0;          
    end
	else
        case(cur_state)
            IDLE:begin
                app_wdf_data <= 0;   
                wr_addr_cnt  <= 0;     
                rd_addr_cnt  <= 0;       
                app_addr     <= 0;
             end
            WRITE:begin
                if(wr_proc)begin
                    app_wdf_data <= app_wdf_data + 1;
                    wr_addr_cnt  <= wr_addr_cnt + 1;
                    app_addr     <= app_addr + 8;
                end
                else begin
                    app_wdf_data <= app_wdf_data;      
                    wr_addr_cnt  <= wr_addr_cnt;
                    app_addr     <= app_addr; 
                end
              end
            WAIT:begin                                                  
                rd_addr_cnt <= 0;
                app_addr    <= 0;
              end
            READ:begin 
                if(app_rdy)begin
                    rd_addr_cnt <= rd_addr_cnt + 1'd1;
                    app_addr    <= app_addr + 8;
                end
                else begin
                    rd_addr_cnt <= rd_addr_cnt;
                    app_addr    <= app_addr; 
                end
              end
            default:begin
                app_wdf_data <= 0;
                wr_addr_cnt  <= 0;
                rd_addr_cnt  <= 0;
                app_addr     <= 0;
            end
        endcase
end   

assign error = (app_rd_data_valid && (rd_cnt!=app_rd_data));  

always @(posedge ui_clk or negedge rst_n)
begin
    if(~rst_n) 
        error_flag <= 0;
    else if(error)
        error_flag <= 1;
end

always @(posedge ui_clk or negedge rst_n)
begin
    if(~rst_n) 
        rd_cnt <= 0;   		
    else if(app_rd_data_valid && rd_cnt == WR_LEN - 1)
         rd_cnt <= 0;              
    else if (app_rd_data_valid )
        rd_cnt <= rd_cnt + 1;
end
 
endmodule

原网站

版权声明
本文为[chylinne]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/216/202208041104160134.html