当前位置:网站首页>The use of DDR3 (Naive) in Xilinx VIVADO (2) Read and write design
The use of DDR3 (Naive) in Xilinx VIVADO (2) Read and write design
2022-08-04 11:13:00 【chylinne】
1、概述
本文基于 Xilinx VIVADO 2018.3 调用的 DDR3 IP 核(Memory Interface Generator, MIG 7 Series),针对 Xilinx 定义的 app 接口(Naive),Design the read-write module state machine,并用 Verilog 进行实现.
2、Read and write state machine design
The function we designed the read-write test module is expected to achieve:
(1)Write a certain amount of data(可设置,默认 512 个)到 DDR3,Write address from 0 开始.
(2)从地址 0 Write before starting to read DDR3 的数据,Simultaneous judgment reading、Whether the write data is consistent.
(3)Cycle through the previous two steps,即写、读、写、读 ......
因此,状态机很简单,我们可以设置如下 4 个状态,Its state transition rules are shown in the figure above.
IDLE:初始状态,等 MIG IP After the core initialization is completed, it jumps to the write data state WRITE.
WRITE:写数据状态,in this state MIG IP The core writes a certain amount of data(测试为 512 个).When the last data is written,Synchronous jump to wait state WAIT.
WAIT:过渡状态,Only one clock cycle is maintained.
READ:读数据状态,In this state from MIG IP The core reads a certain amount of data(测试为 512 个).when the last data is read,Synchronously jump to the initial state IDLE.Start a new round of writing、读过程.
上一篇文章说到,在 Xilinx 定义的 app 接口(Naive)模式下,DDR3 There are three scenarios when writing data,This test uses the scenario where the write command and the write data occur on the same clock cycle,This will make coding much easier,But a little bit of efficiency is sacrificed accordingly(不会造成多大的影响).
3、代码实现
The complete read-write module test code is as follows:
module ddr3_rw # (
parameter integer WR_LEN = 512,
parameter integer DATA_WIDTH = 128, //8 times 16 equals 128 bits
parameter integer ADDR_WIDTH = 28
)(
input ui_clk,
input ui_clk_sync_rst ,
input init_calib_complete,
input app_rdy,
input app_wdf_rdy,
input app_rd_data_valid,
input [DATA_WIDTH - 1:0] app_rd_data,
output reg [ADDR_WIDTH - 1:0] app_addr,
output app_en,
output app_wdf_wren,
output app_wdf_end,
output [2:0] app_cmd,
output reg [DATA_WIDTH - 1:0] app_wdf_data,
output reg error_flag
);
localparam IDLE = 4'b0001;
localparam WRITE = 4'b0010;
localparam WAIT = 4'b0100;
localparam READ = 4'b1000;
reg [3:0] cur_state;
reg [3:0] next_state;
reg [ADDR_WIDTH - 1:0] rd_addr_cnt;
reg [ADDR_WIDTH - 1:0] wr_addr_cnt;
reg [ADDR_WIDTH - 1:0] rd_cnt;
wire error;
wire rst_n;
wire wr_proc;
wire wr_last;
wire rd_addr_last;
assign rst_n = ~ui_clk_sync_rst;
assign app_en = app_rdy && ((cur_state == WRITE && app_wdf_rdy) || cur_state == READ);
assign app_wdf_wren = (cur_state == WRITE) && wr_proc;
assign app_wdf_end = app_wdf_wren;
assign app_cmd = (cur_state == READ) ? 3'd1 :3'd0;
assign wr_proc = ~app_cmd && app_rdy && app_wdf_rdy;
assign wr_last = app_wdf_wren && (wr_addr_cnt == WR_LEN - 1) ;
assign rd_addr_last = (rd_addr_cnt == WR_LEN - 1) && app_rdy && app_cmd;
always @(posedge ui_clk or negedge rst_n)
begin
if(~rst_n)
cur_state <= IDLE;
else
cur_state <= next_state;
end
always @(*)
begin
if(~rst_n)
next_state = IDLE;
else
case(cur_state)
IDLE:
if(init_calib_complete)
next_state = WRITE;
else
next_state = IDLE;
WRITE:
if(wr_last)
next_state = WAIT;
else
next_state = WRITE;
WAIT:
next_state = READ;
READ:
if(rd_addr_last)
next_state = IDLE;
else
next_state = READ;
default:;
endcase
end
always @(posedge ui_clk or negedge rst_n)
begin
if(~rst_n)
begin
app_wdf_data <= 0;
wr_addr_cnt <= 0;
rd_addr_cnt <= 0;
app_addr <= 0;
end
else
case(cur_state)
IDLE:begin
app_wdf_data <= 0;
wr_addr_cnt <= 0;
rd_addr_cnt <= 0;
app_addr <= 0;
end
WRITE:begin
if(wr_proc)begin
app_wdf_data <= app_wdf_data + 1;
wr_addr_cnt <= wr_addr_cnt + 1;
app_addr <= app_addr + 8;
end
else begin
app_wdf_data <= app_wdf_data;
wr_addr_cnt <= wr_addr_cnt;
app_addr <= app_addr;
end
end
WAIT:begin
rd_addr_cnt <= 0;
app_addr <= 0;
end
READ:begin
if(app_rdy)begin
rd_addr_cnt <= rd_addr_cnt + 1'd1;
app_addr <= app_addr + 8;
end
else begin
rd_addr_cnt <= rd_addr_cnt;
app_addr <= app_addr;
end
end
default:begin
app_wdf_data <= 0;
wr_addr_cnt <= 0;
rd_addr_cnt <= 0;
app_addr <= 0;
end
endcase
end
assign error = (app_rd_data_valid && (rd_cnt!=app_rd_data));
always @(posedge ui_clk or negedge rst_n)
begin
if(~rst_n)
error_flag <= 0;
else if(error)
error_flag <= 1;
end
always @(posedge ui_clk or negedge rst_n)
begin
if(~rst_n)
rd_cnt <= 0;
else if(app_rd_data_valid && rd_cnt == WR_LEN - 1)
rd_cnt <= 0;
else if (app_rd_data_valid )
rd_cnt <= rd_cnt + 1;
end
endmodule边栏推荐
- 入门MySql表的增删查改
- 第二批养老理财试点产品发行 一小时销售20亿元
- Leetcode刷题——路径总和
- 【LeetCode】700.二叉搜索树
- 少即是多:视觉SLAM的点稀疏化(IROS 2022)
- DB2查看执行过长的SQL
- 上帝空间——全球首个基于Web3.0的艺术协议创意平台,拓宽多元艺术融合边界
- Camunda overall architecture and related concepts
- win8和win10下,visual studio 2008 调试出现无响应的卡死问题解决
- iMeta | German National Cancer Center Gu Zuguang published a complex heatmap visualization method
猜你喜欢

MySql数据库入门的基本操作

图文手把手教程--ESP32 OTA空中升级(VSCODE+IDF)

Zikko上市同时搭载HDMI2.1和2.5GbE新款雷电4扩展坞

中介者模式(Mediator)

【LeetCode】700.二叉搜索树

美摄问答室|美映 VS 美摄云剪辑

化繁为简!阿里新产亿级流量系统设计核心原理高级笔记(终极版)

Leetcode刷题——路径总和

ECCV 2022 | 清华&腾讯AI Lab提出REALY: 重新思考3D人脸重建的评估方法

What is the principle of thermal imaging temperature measurement?Do you know?
随机推荐
Why are all hotel bathrooms transparent?
Super Learning Method
8月活动|51CTO十七周年庆,发博文得茶具/笔记本/T恤等礼品!
使用.NET简单实现一个Redis的高性能克隆版(二)
Heap Sort
Advanced transcriptome analysis and R data visualization hot registration (2022.10)
*iframe*
123
Learn to use the basic interface of set and map
Leetcode刷题——543. 二叉树的直径、617. 合并二叉树(递归解决)
【黄啊码】MySQL入门—1、SQL 的执行流程
Heap Sort
WPF 截图控件之画笔(八)「仿微信」
秒云成功入选《2022爱分析 · 银行数字化厂商全景报告》,智能运维能力获认可
化繁为简!阿里新产亿级流量系统设计核心原理高级笔记(终极版)
datax oracle to oracle离线json文件
AWS Lambda related concepts and implementation approach
winform 在Datatable插入一笔数据
map的一道题目<单词识别>
知乎数据分析训练营
