当前位置:网站首页>Advanced Mathematics (Seventh Edition) Tongji University exercises 2-5 personal solutions
Advanced Mathematics (Seventh Edition) Tongji University exercises 2-5 personal solutions
2022-07-26 07:07:00 【Navigator_ Z】
Advanced mathematics ( The seventh edition ) Tongji University exercises 2-5
1. It is known that y = x 3 − x , Calculated at x = 2 Chudang Δ x Respectively equal to 1 , 0.1 , 0.01 At the time of the Δ y And d y . \begin{aligned}&1. \ It is known that y=x^3-x, Calculated at x=2 Chudang \Delta x Respectively equal to 1,0.1,0.01 At the time of the \Delta y And dy.&\end{aligned} 1. It is known that y=x3−x, Calculated at x=2 Chudang Δx Respectively equal to 1,0.1,0.01 At the time of the Δy And dy.
Explain :
Δ y = f ( x + Δ x ) − f ( x ) = ( x + Δ x ) 3 − ( x + Δ x ) − x 3 + x = 3 x ( Δ x ) 2 + 3 x 2 Δ x + ( Δ x ) 3 − Δ x stay x = 2 It's about , Δ x = 1 when , Δ y = 18 , Δ x = 0.1 when , Δ y = 1.161 , Δ x = 0.01 when , Δ y = 0.110601 d y = f ′ ( x ) Δ x = ( 3 x 2 − 1 ) Δ x stay x = 2 It's about , Δ x = 1 when , d y = 11 , Δ x = 0.1 when , d y = 1.1 , Δ x = 0.01 when , d y = 0.11 \begin{aligned} &\ \ \Delta y =f(x+\Delta x)-f(x)=(x+\Delta x)^3-(x+\Delta x)-x^3+x=3x(\Delta x)^2+3x^2\Delta x+(\Delta x)^3-\Delta x\\\\ &\ \ stay x=2 It's about ,\Delta x=1 when ,\Delta y=18,\Delta x=0.1 when ,\Delta y=1.161,\Delta x=0.01 when ,\Delta y=0.110601\\\\ &\ \ dy=f'(x)\Delta x=(3x^2-1)\Delta x\\\\ &\ \ stay x=2 It's about ,\Delta x=1 when ,dy=11,\Delta x=0.1 when ,dy=1.1,\Delta x=0.01 when ,dy=0.11 & \end{aligned} Δy=f(x+Δx)−f(x)=(x+Δx)3−(x+Δx)−x3+x=3x(Δx)2+3x2Δx+(Δx)3−Δx stay x=2 It's about ,Δx=1 when ,Δy=18,Δx=0.1 when ,Δy=1.161,Δx=0.01 when ,Δy=0.110601 dy=f′(x)Δx=(3x2−1)Δx stay x=2 It's about ,Δx=1 when ,dy=11,Δx=0.1 when ,dy=1.1,Δx=0.01 when ,dy=0.11
2. Let's set the function y = f ( x ) The figure of is shown in the figure 2 − 12 , Try in Figure 2 − 12 ( a ) 、 ( b ) 、 ( c ) 、 ( d ) Mark the points respectively in x 0 Of d y 、 Δ y And Δ y − d y , And explain its positive and negative . \begin{aligned}&2. \ Let's set the function y=f(x) The figure of is shown in the figure 2-12, Try in Figure 2-12(a)、(b)、(c)、(d) Mark the points respectively in x_0 Of dy、\Delta y\\\\&\ \ \ \ And \Delta y -dy, And explain its positive and negative .&\end{aligned} 2. Let's set the function y=f(x) The figure of is shown in the figure 2−12, Try in Figure 2−12(a)、(b)、(c)、(d) Mark the points respectively in x0 Of dy、Δy And Δy−dy, And explain its positive and negative .

Explain :

( a ) Δ y > 0 , d y > 0 , Δ y − d y > 0 ( b ) Δ y > 0 , d y > 0 , Δ y − d y < 0 ( c ) Δ y < 0 , d y < 0 , Δ y − d y < 0 ( d ) Δ y < 0 , d y < 0 , Δ y − d y > 0 \begin{aligned} &\ \ (a)\ \Delta y \gt 0, \ dy \gt 0, \ \Delta y-dy \gt 0\\\\ &\ \ (b)\ \Delta y \gt 0, \ dy \gt 0, \ \Delta y-dy \lt 0\\\\ &\ \ (c)\ \Delta y \lt 0, \ dy \lt 0, \ \Delta y-dy \lt 0\\\\ &\ \ (d)\ \Delta y \lt 0, \ dy \lt 0, \ \Delta y-dy \gt 0 & \end{aligned} (a) Δy>0, dy>0, Δy−dy>0 (b) Δy>0, dy>0, Δy−dy<0 (c) Δy<0, dy<0, Δy−dy<0 (d) Δy<0, dy<0, Δy−dy>0
3. Find the differential of the following function : \begin{aligned}&3. \ Find the differential of the following function :&\end{aligned} 3. Find the differential of the following function :
( 1 ) y = 1 x + 2 x ; ( 2 ) y = x s i n 2 x ; ( 3 ) y = x x 2 + 1 ; ( 4 ) y = l n 2 ( 1 − x ) ; ( 5 ) y = x 2 e 2 x ; ( 6 ) y = e − x c o s ( 3 − x ) ; ( 7 ) y = a r c s i n 1 − x 2 ; ( 8 ) y = t a n 2 ( 1 + 2 x 2 ) ; ( 9 ) y = a r c t a n 1 − x 2 1 + x 2 ; ( 10 ) s = A s i n ( ω t + φ ) ( A 、 ω 、 φ Is constant ) . \begin{aligned} &\ \ (1)\ \ y=\frac{1}{x}+2\sqrt{x};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ y=xsin\ 2x;\\\\ &\ \ (3)\ \ y=\frac{x}{\sqrt{x^2+1}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ y=ln^2(1-x);\\\\ &\ \ (5)\ \ y=x^2e^{2x};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (6)\ \ y=e^{-x}cos(3-x);\\\\ &\ \ (7)\ \ y=arcsin\sqrt{1-x^2};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (8)\ \ y=tan^2(1+2x^2);\\\\ &\ \ (9)\ \ y=arctan\frac{1-x^2}{1+x^2};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (10)\ \ s=Asin(\omega t+\varphi)\ (A、\omega、\varphi Is constant ). & \end{aligned} (1) y=x1+2x; (2) y=xsin 2x; (3) y=x2+1x; (4) y=ln2(1−x); (5) y=x2e2x; (6) y=e−xcos(3−x); (7) y=arcsin1−x2; (8) y=tan2(1+2x2); (9) y=arctan1+x21−x2; (10) s=Asin(ωt+φ) (A、ω、φ Is constant ).
Explain :
( 1 ) d y = y ′ d x = ( − 1 x 2 + 1 x ) d x ( 2 ) d y = y ′ d x = ( s i n 2 x + 2 x c o s 2 x ) d x ( 3 ) d y = y ′ d x = x ′ x 2 + 1 − x ( x 2 + 1 ) ′ x 2 + 1 d x = 1 ( x 2 + 1 ) 3 d x ( 4 ) d y = y ′ d x = ( l n 2 ( 1 − x ) ) ′ d x = 2 l n ( 1 − x ) − 1 1 − x d x = 2 l n ( 1 − x ) x − 1 d x ( 5 ) d y = y ′ d x = ( x 2 e 2 x ) ′ d x = ( 2 x e 2 x + 2 x 2 e 2 x ) d x = 2 x e 2 x ( 1 + x ) d x ( 6 ) d y = y ′ d x = ( e − x c o s ( 3 − x ) ) ′ d x = ( − e − x c o s ( 3 − x ) + e − x s i n ( 3 − x ) ) d x = e − x [ s i n ( 3 − x ) − c o s ( 3 − x ) ] d x ( 7 ) d y = y ′ d x = ( a r c s i n 1 − x 2 ) ′ d x = − x ∣ x ∣ 1 − x 2 d x = { d x 1 − x 2 , − 1 < x < 0 , − d x 1 − x 2 , 0 < x < 1 ( 8 ) d y = y ′ d x = ( t a n 2 ( 1 + 2 x 2 ) ) ′ d x = 8 x s i n ( 1 + 2 x 2 ) c o s 3 ( 1 + 2 x 2 ) d x ( 9 ) d y = y ′ d x = ( a r c t a n 1 − x 2 1 + x 2 ) ′ d x = ( 1 1 + ( 1 − x 2 ) 2 ( 1 + x 2 ) 2 ⋅ ( 1 − x 2 ) ′ ( 1 + x 2 ) − ( 1 − x 2 ) ( 1 + x 2 ) ′ ( 1 + x 2 ) 2 ) d x = − 2 x x 4 + 1 d x ( 10 ) d s = s ′ d t = ( A s i n ( ω t + φ ) ) ′ d t = A ω c o s ( ω t + φ ) d t \begin{aligned} &\ \ (1)\ dy=y'dx=\left(-\frac{1}{x^2}+\frac{1}{\sqrt{x}}\right)dx\\\\ &\ \ (2)\ dy=y'dx=(sin\ 2x+2xcos\ 2x)dx\\\\ &\ \ (3)\ dy=y'dx=\frac{x'\sqrt{x^2+1}-x(\sqrt{x^2+1})'}{x^2+1}dx=\frac{1}{\sqrt{(x^2+1)^3}}dx\\\\ &\ \ (4)\ dy=y'dx=(ln^2(1-x))'dx=2ln(1-x)\frac{-1}{1-x}dx=\frac{2ln(1-x)}{x-1}dx\\\\ &\ \ (5)\ dy=y'dx=(x^2e^{2x})'dx=(2xe^{2x}+2x^2e^{2x})dx=2xe^{2x}(1+x)dx\\\\ &\ \ (6)\ dy=y'dx=(e^{-x}cos(3-x))'dx=(-e^{-x}cos(3-x)+e^{-x}sin(3-x))dx=e^{-x}[sin(3-x)-cos(3-x)]dx\\\\ &\ \ (7)\ dy=y'dx=(arcsin\sqrt{1-x^2})'dx=-\frac{x}{|x|\sqrt{1-x^2}}dx=\begin{cases}\frac{dx}{\sqrt{1-x^2}},-1 \lt x \lt 0,\\\\-\frac{dx}{\sqrt{1-x^2}},0 \lt x \lt 1\end{cases}\\\\ &\ \ (8)\ dy=y'dx=(tan^2(1+2x^2))'dx=\frac{8xsin(1+2x^2)}{cos^3(1+2x^2)}dx\\\\ &\ \ (9)\ dy=y'dx=\left(arctan\frac{1-x^2}{1+x^2}\right)'dx=\left(\frac{1}{1+\frac{(1-x^2)^2}{(1+x^2)^2}}\cdot \frac{(1-x^2)'(1+x^2)-(1-x^2)(1+x^2)'}{(1+x^2)^2}\right)dx=-\frac{2x}{x^4+1}dx\\\\ &\ \ (10)\ ds=s'dt=(Asin(\omega t+\varphi))'dt=A\omega cos(\omega t+\varphi)dt & \end{aligned} (1) dy=y′dx=(−x21+x1)dx (2) dy=y′dx=(sin 2x+2xcos 2x)dx (3) dy=y′dx=x2+1x′x2+1−x(x2+1)′dx=(x2+1)31dx (4) dy=y′dx=(ln2(1−x))′dx=2ln(1−x)1−x−1dx=x−12ln(1−x)dx (5) dy=y′dx=(x2e2x)′dx=(2xe2x+2x2e2x)dx=2xe2x(1+x)dx (6) dy=y′dx=(e−xcos(3−x))′dx=(−e−xcos(3−x)+e−xsin(3−x))dx=e−x[sin(3−x)−cos(3−x)]dx (7) dy=y′dx=(arcsin1−x2)′dx=−∣x∣1−x2xdx=⎩⎨⎧1−x2dx,−1<x<0,−1−x2dx,0<x<1 (8) dy=y′dx=(tan2(1+2x2))′dx=cos3(1+2x2)8xsin(1+2x2)dx (9) dy=y′dx=(arctan1+x21−x2)′dx=⎝⎛1+(1+x2)2(1−x2)21⋅(1+x2)2(1−x2)′(1+x2)−(1−x2)(1+x2)′⎠⎞dx=−x4+12xdx (10) ds=s′dt=(Asin(ωt+φ))′dt=Aωcos(ωt+φ)dt
4. Fill the appropriate function in the following brackets , Make the equation hold : \begin{aligned}&4. \ Fill the appropriate function in the following brackets , Make the equation hold :&\end{aligned} 4. Fill the appropriate function in the following brackets , Make the equation hold :
( 1 ) d ( ) = 2 d x ; ( 2 ) d ( ) = 3 x d x ; ( 3 ) d ( ) = c o s t d t ; ( 4 ) d ( ) = s i n ω x d x ( ω ≠ 0 ) ; ( 5 ) d ( ) = 1 1 + x d x ; ( 6 ) d ( ) = e − 2 x d x ; ( 7 ) d ( ) = 1 x d x ; ( 8 ) d ( ) = s e c 2 3 x d x . \begin{aligned} &\ \ (1)\ \ d(\ \ )=2dx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ d(\ \ )=3xdx;\\\\ &\ \ (3)\ \ d(\ \ )=cos\ tdt;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ d(\ \ )=sin\ \omega xdx\ (\omega \neq 0);\\\\ &\ \ (5)\ \ d(\ \ )=\frac{1}{1+x}dx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (6)\ \ d(\ \ )=e^{-2x}dx;\\\\ &\ \ (7)\ \ d(\ \ )=\frac{1}{\sqrt{x}}dx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (8)\ \ d(\ \ )=sec^23xdx. & \end{aligned} (1) d( )=2dx; (2) d( )=3xdx; (3) d( )=cos tdt; (4) d( )=sin ωxdx (ω=0); (5) d( )=1+x1dx; (6) d( )=e−2xdx; (7) d( )=x1dx; (8) d( )=sec23xdx.
Explain :
( 1 ) d ( 2 x + C ) = 2 d x , C Is an arbitrary constant ( 2 ) d ( 3 2 x 2 + C ) = 3 x d x , C Is an arbitrary constant ( 3 ) d ( s i n t + C ) = c o s t d t , C Is an arbitrary constant ( 4 ) d ( − 1 ω c o s ω x + C ) = s i n ω x d x , C Is an arbitrary constant ( 5 ) d ( l n ( 1 + x ) + C ) = 1 1 + x d x , C Is an arbitrary constant ( 6 ) d ( − 1 2 e − 2 x + C ) = e − 2 x d x , C Is an arbitrary constant ( 7 ) d ( 2 x + C ) = 1 x d x , C Is an arbitrary constant ( 8 ) d ( 1 3 t a n 3 x + C ) = s e c 2 3 x d x , C Is an arbitrary constant \begin{aligned} &\ \ (1)\ d(2x+C)=2dx,C Is an arbitrary constant \\\\ &\ \ (2)\ d(\frac{3}{2}x^2+C)=3xdx,C Is an arbitrary constant \\\\ &\ \ (3)\ d(sin\ t+C)=cos\ tdt,C Is an arbitrary constant \\\\ &\ \ (4)\ d(-\frac{1}{\omega}cos\ \omega x+C)=sin\ \omega xdx,C Is an arbitrary constant \\\\ &\ \ (5)\ d(ln(1+x)+C)=\frac{1}{1+x}dx,C Is an arbitrary constant \\\\ &\ \ (6)\ d(-\frac{1}{2}e^{-2x}+C)=e^{-2x}dx,C Is an arbitrary constant \\\\ &\ \ (7)\ d(2\sqrt{x}+C)=\frac{1}{\sqrt{x}}dx,C Is an arbitrary constant \\\\ &\ \ (8)\ d(\frac{1}{3}tan\ 3x+C)=sec^23xdx,C Is an arbitrary constant & \end{aligned} (1) d(2x+C)=2dx,C Is an arbitrary constant (2) d(23x2+C)=3xdx,C Is an arbitrary constant (3) d(sin t+C)=cos tdt,C Is an arbitrary constant (4) d(−ω1cos ωx+C)=sin ωxdx,C Is an arbitrary constant (5) d(ln(1+x)+C)=1+x1dx,C Is an arbitrary constant (6) d(−21e−2x+C)=e−2xdx,C Is an arbitrary constant (7) d(2x+C)=x1dx,C Is an arbitrary constant (8) d(31tan 3x+C)=sec23xdx,C Is an arbitrary constant
5. Pictured 2 − 13 Cable shown A O B ⌢ The length of s , The span is 2 l , The lowest point of the cable O Connect with the rod top A B The distance to f , Then the cable length can be calculated according to the following formula s = 2 l ( 1 + 2 f 2 3 l 2 ) , When f Changed Δ f when , How much does the cable length change ? \begin{aligned}&5. \ Pictured 2-13 Cable shown \overset{\LARGE\frown}{AOB} The length of s, The span is 2l, The lowest point of the cable O Connect with the rod top AB The distance to f,\\\\&\ \ \ \ \ Then the cable length can be calculated according to the following formula s=2l\left(1+\frac{2f^2}{3l^2}\right), When f Changed \Delta f when , How much does the cable length change ?&\end{aligned} 5. Pictured 2−13 Cable shown AOB⌢ The length of s, The span is 2l, The lowest point of the cable O Connect with the rod top AB The distance to f, Then the cable length can be calculated according to the following formula s=2l(1+3l22f2), When f Changed Δf when , How much does the cable length change ?

Explain :
s = 2 l ( 1 + 2 f 2 3 l 2 ) , Δ s ≈ d s = 2 l ⋅ 4 f 3 l 2 Δ f = 8 f 3 l Δ f \begin{aligned} &\ \ s=2l\left(1+\frac{2f^2}{3l^2}\right),\Delta s \approx ds=2l \cdot \frac{4f}{3l^2}\Delta f=\frac{8f}{3l}\Delta f & \end{aligned} s=2l(1+3l22f2),Δs≈ds=2l⋅3l24fΔf=3l8fΔf
6. Set the center angle of the fan α = 6 0 ∘ , radius R = 100 c m ( chart 2 − 14 ). If R unchanged , α Reduce 3 0 ′ , Ask about the change of sector area ? And if α unchanged , R Added 1 c m , Ask about the change of sector area ? \begin{aligned}&6. \ Set the center angle of the fan \alpha =60^{\circ}, radius R=100\ cm( chart 2-14). If R unchanged ,\alpha Reduce 30',\\\\&\ \ \ \ \ Ask about the change of sector area ? And if \alpha unchanged ,R Added 1\ cm, Ask about the change of sector area ?&\end{aligned} 6. Set the center angle of the fan α=60∘, radius R=100 cm( chart 2−14). If R unchanged ,α Reduce 30′, Ask about the change of sector area ? And if α unchanged ,R Added 1 cm, Ask about the change of sector area ?

Explain :
Sector area formula S = R 2 2 α , Δ S ≈ d S = R 2 2 Δ α When R = 100 , Δ α = − 3 0 ′ = − π 360 , α = π 3 when , Δ S ≈ 1 2 ⋅ 10 0 2 ⋅ ( − π 360 ) ≈ − 43.63 c m 2 When R = 100 , Δ R = 1 , α = π 3 when , Δ S ≈ π 3 ⋅ 100 ⋅ 1 ≈ 104.72 c m 2 \begin{aligned} &\ \ Sector area formula S=\frac{R^2}{2}\alpha,\Delta S \approx dS=\frac{R^2}{2}\Delta \alpha\\\\ &\ \ When R=100,\Delta \alpha=-30'=-\frac{\pi}{360},\alpha=\frac{\pi}{3} when ,\Delta S \approx \frac{1}{2}\cdot 100^2 \cdot \left(-\frac{\pi}{360}\right) \approx -43.63\ cm^2\\\\ &\ \ When R=100,\Delta R=1,\alpha =\frac{\pi}{3} when ,\Delta S \approx \frac{\pi}{3} \cdot 100 \cdot 1 \approx 104.72\ cm^2 & \end{aligned} Sector area formula S=2R2α,ΔS≈dS=2R2Δα When R=100,Δα=−30′=−360π,α=3π when ,ΔS≈21⋅1002⋅(−360π)≈−43.63 cm2 When R=100,ΔR=1,α=3π when ,ΔS≈3π⋅100⋅1≈104.72 cm2
7. Calculate the approximate value of the following trigonometric function : \begin{aligned}&7. \ Calculate the approximate value of the following trigonometric function :&\end{aligned} 7. Calculate the approximate value of the following trigonometric function :
( 1 ) c o s 2 9 ∘ ; ( 2 ) t a n 13 6 ∘ . \begin{aligned} &\ \ (1)\ \ cos\ 29^{\circ};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ tan\ 136^{\circ}. & \end{aligned} (1) cos 29∘; (2) tan 136∘.
Explain :
( 1 ) c o s 2 9 ∘ = c o s ( π 6 − π 180 ) ≈ c o s π 6 + ( − s i n π 6 ) ⋅ ( − π 180 ) ≈ 3 2 + π 360 ≈ 0.8748. ( 2 ) t a n 13 6 ∘ = t a n ( 3 4 π + π 180 ) ≈ t a n 3 4 π + s e c 2 3 4 π ⋅ π 180 ≈ − 0.9651 \begin{aligned} &\ \ (1)\ cos\ 29^{\circ} = cos\ \left(\frac{\pi}{6}-\frac{\pi}{180}\right) \approx cos\ \frac{\pi}{6}+(-sin\ \frac{\pi}{6}) \cdot \left(-\frac{\pi}{180}\right) \approx \frac{\sqrt{3}}{2}+\frac{\pi}{360} \approx 0.8748.\\\\ &\ \ (2)\ tan\ 136^{\circ} = tan\ \left(\frac{3}{4}\pi+\frac{\pi}{180}\right) \approx tan\ \frac{3}{4}\pi+sec^2\ \frac{3}{4}\pi \cdot \frac{\pi}{180} \approx -0.9651 & \end{aligned} (1) cos 29∘=cos (6π−180π)≈cos 6π+(−sin 6π)⋅(−180π)≈23+360π≈0.8748. (2) tan 136∘=tan (43π+180π)≈tan 43π+sec2 43π⋅180π≈−0.9651
8. Calculate the approximate value of the following inverse trigonometric function : \begin{aligned}&8. \ Calculate the approximate value of the following inverse trigonometric function :&\end{aligned} 8. Calculate the approximate value of the following inverse trigonometric function :
( 1 ) a r c s i n 0.5002 ; ( 2 ) a r c c o s 0.4995. \begin{aligned} &\ \ (1)\ \ arcsin\ 0.5002;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ arccos\ 0.4995. & \end{aligned} (1) arcsin 0.5002; (2) arccos 0.4995.
Explain :
( 1 ) a r c s i n 0.5002 ≈ a r c s i n 0.5 + 1 1 − ( 0.5 ) 2 ⋅ 0.0002 ≈ 3 0 ∘ 4 7 ′ ′ ( 2 ) a r c c o s 0.4995 ≈ a r c c o s 0.5 − 1 1 − ( 0.5 ) 2 ⋅ ( − 0.0005 ) ≈ 6 0 ∘ 2 ′ \begin{aligned} &\ \ (1)\ arcsin\ 0.5002 \approx arcsin\ 0.5+\frac{1}{\sqrt{1-(0.5)^2}}\cdot 0.0002 \approx 30^{\circ}47''\\\\ &\ \ (2) \ arccos\ 0.4995 \approx arccos\ 0.5-\frac{1}{\sqrt{1-(0.5)^2}}\cdot (-0.0005) \approx 60^{\circ}2' & \end{aligned} (1) arcsin 0.5002≈arcsin 0.5+1−(0.5)21⋅0.0002≈30∘47′′ (2) arccos 0.4995≈arccos 0.5−1−(0.5)21⋅(−0.0005)≈60∘2′
9. When ∣ x ∣ More hours , Prove the following approximate formula : \begin{aligned}&9. \ When |x| More hours , Prove the following approximate formula :&\end{aligned} 9. When ∣x∣ More hours , Prove the following approximate formula :
( 1 ) t a n x ≈ x ( x Is the radian value of the angle ); ( 2 ) l n ( 1 + x ) ≈ x ; ( 3 ) 1 + x n ≈ 1 + 1 n x ; ( 4 ) e x ≈ 1 + x . And calculate t a n 4 5 ′ and l n 1.002 Approximate value . \begin{aligned} &\ \ (1)\ \ tan\ x \approx x(x Is the radian value of the angle );\ \ \ \ \ (2)\ \ ln(1+x) \approx x;\\\\ &\ \ (3)\ \ \sqrt[n]{1+x} \approx 1+\frac{1}{n}x;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ e^x \approx 1+x.\\\\ &\ \ And calculate tan\ 45' and ln\ 1.002 Approximate value . & \end{aligned} (1) tan x≈x(x Is the radian value of the angle ); (2) ln(1+x)≈x; (3) n1+x≈1+n1x; (4) ex≈1+x. And calculate tan 45′ and ln 1.002 Approximate value .
Explain :
( 1 ) t a n x ≈ t a n 0 + ( t a n 0 ) ′ ⋅ x = 0 + s e c 2 0 ⋅ x = x ( 2 ) l n ( 1 + x ) ≈ l n ( 1 + 0 ) + [ l n ( 1 + x ) ] ′ ⋅ x = 0 + 1 1 + 0 x = x ( 3 ) 1 + x n ≈ 1 + 0 n + ( 1 + 0 n ) ′ ⋅ x = 1 + 1 n ( 1 + 0 ) 1 n − 1 ⋅ x = 1 + 1 n x ( 4 ) e x ≈ e 0 + ( e 0 ) ′ ⋅ x = 1 + e 0 x = 1 + x . t a n 4 5 ′ = t a n 0.0131 ≈ 0.0131 , l n ( 1.002 ) ≈ 0.002. \begin{aligned} &\ \ (1)\ tan\ x \approx tan\ 0+(tan\ 0)'\cdot x =0+sec^2\ 0\cdot x=x\\\\ &\ \ (2)\ ln(1+x) \approx ln(1+0)+[ln(1+x)]'\cdot x=0+\frac{1}{1+0}x=x\\\\ &\ \ (3)\ \sqrt[n]{1+x} \approx \sqrt[n]{1+0}+(\sqrt[n]{1+0})'\cdot x=1+\frac{1}{n}(1+0)^{\frac{1}{n}-1}\cdot x=1+\frac{1}{n}x\\\\ &\ \ (4)\ e^x \approx e^0+(e^0)'\cdot x=1+e^0x=1+x.\\\\ &\ \ tan\ 45' = tan\ 0.0131 \approx 0.0131,ln(1.002) \approx 0.002. & \end{aligned} (1) tan x≈tan 0+(tan 0)′⋅x=0+sec2 0⋅x=x (2) ln(1+x)≈ln(1+0)+[ln(1+x)]′⋅x=0+1+01x=x (3) n1+x≈n1+0+(n1+0)′⋅x=1+n1(1+0)n1−1⋅x=1+n1x (4) ex≈e0+(e0)′⋅x=1+e0x=1+x. tan 45′=tan 0.0131≈0.0131,ln(1.002)≈0.002.
10. Calculate the approximate values of the following roots : \begin{aligned}&10. \ Calculate the approximate values of the following roots :&\end{aligned} 10. Calculate the approximate values of the following roots :
( 1 ) 996 3 ; ( 2 ) 65 6 . \begin{aligned} &\ \ (1)\ \ \sqrt[3]{996};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \sqrt[6]{65}. & \end{aligned} (1) 3996; (2) 665.
Explain :
( 1 ) because 1 + x n ≈ 1 + x n , therefore 996 3 = 1000 − 4 3 = 1 − 4 1000 3 ≈ 10 [ 1 + 1 3 ( − 4 1000 ) ] ≈ 9.987 ( 2 ) 65 6 = 64 + 1 6 = 2 1 + 1 64 6 ≈ 2 ( 1 + 1 6 ⋅ 1 64 ) ≈ 2.0052 \begin{aligned} &\ \ (1)\ because \sqrt[n]{1+x} \approx 1+\frac{x}{n}, therefore \sqrt[3]{996} = \sqrt[3]{1000-4}=\sqrt[3]{1-\frac{4}{1000}} \approx 10\left[1+\frac{1}{3}\left(-\frac{4}{1000}\right)\right] \approx 9.987\\\\ &\ \ (2)\ \sqrt[6]{65}=\sqrt[6]{64+1}=2\sqrt[6]{1+\frac{1}{64}} \approx 2\left(1+\frac{1}{6}\cdot \frac{1}{64}\right) \approx 2.0052 & \end{aligned} (1) because n1+x≈1+nx, therefore 3996=31000−4=31−10004≈10[1+31(−10004)]≈9.987 (2) 665=664+1=261+641≈2(1+61⋅641)≈2.0052
11. When calculating the volume of the sphere , The accuracy is required to be 2 % within . Ask at this time to measure the diameter D The relative error of cannot exceed much ? \begin{aligned}&11. \ When calculating the volume of the sphere , The accuracy is required to be 2\% within . Ask at this time to measure the diameter D The relative error of cannot exceed much ?&\end{aligned} 11. When calculating the volume of the sphere , The accuracy is required to be 2% within . Ask at this time to measure the diameter D The relative error of cannot exceed much ?
Explain :
The volume formula of the sphere is V = 1 6 π R 3 , therefore d V = 1 6 π D 3 , d V = π 2 D 2 Δ D , because ∣ d V V ∣ = ∣ π 2 D 2 Δ D 1 6 π D 3 ∣ = 3 ∣ Δ D D ∣ ≤ 2 % , obtain ∣ Δ D D ∣ ≤ 0.02 3 ≈ 0.667 % \begin{aligned} &\ \ The volume formula of the sphere is V=\frac{1}{6}\pi R^3, therefore dV=\frac{1}{6}\pi D^3,dV=\frac{\pi}{2}D^2\Delta D,\\\\ &\ \ because \left|\frac{dV}{V}\right|=\left|\frac{\frac{\pi}{2}D^2\Delta D}{\frac{1}{6}\pi D^3}\right|=3\left|\frac{\Delta D}{D}\right| \le 2\%, obtain \left|\frac{\Delta D}{D}\right| \le \frac{0.02}{3} \approx 0.667\% & \end{aligned} The volume formula of the sphere is V=61πR3, therefore dV=61πD3,dV=2πD2ΔD, because ∣∣VdV∣∣=∣∣61πD32πD2ΔD∣∣=3∣∣DΔD∣∣≤2%, obtain ∣∣DΔD∣∣≤30.02≈0.667%
12. The production of a factory is shown in the figure 2 − 15 Sector plate shown , radius R = 200 m m , Center angle required α by 5 5 ∘ . During product inspection , Generally, the chord length is measured l To indirectly measure the central angle α . If you measure the chord length l Error in δ l = 0.1 m m , Ask about the central angle measurement error caused by this δ α How much is the ? \begin{aligned}&12. \ The production of a factory is shown in the figure 2-15 Sector plate shown , radius R=200\ mm, Center angle required \alpha by 55^{\circ}. During product inspection ,\\\\&\ \ \ \ \ \ Generally, the chord length is measured l To indirectly measure the central angle \alpha. If you measure the chord length l Error in \delta_l=0.1\ mm,\\\\&\ \ \ \ \ \ Ask about the central angle measurement error caused by this \delta_\alpha How much is the ?&\end{aligned} 12. The production of a factory is shown in the figure 2−15 Sector plate shown , radius R=200 mm, Center angle required α by 55∘. During product inspection , Generally, the chord length is measured l To indirectly measure the central angle α. If you measure the chord length l Error in δl=0.1 mm, Ask about the central angle measurement error caused by this δα How much is the ?

Explain :
from l 2 = R s i n α 2 have to , α = 2 a r c s i n l 2 R = 2 a r c s i n l 400 , δ α = ∣ α l ′ ∣ δ l = 2 1 − ( l 400 ) 2 ⋅ 1 400 ⋅ δ l . When α = 5 5 ∘ when , l = 2 R s i n α 2 = 400 s i n ( 27. 5 ∘ ) ≈ 184.7 . because δ l = 0.1 , therefore δ α ≈ 2 1 − ( 184.7 400 ) 2 ⋅ 1 400 ⋅ 0.1 ≈ 0.00056 = 1 ′ 5 5 ′ ′ . \begin{aligned} &\ \ from \frac{l}{2}=Rsin\ \frac{\alpha}{2} have to ,\alpha=2arcsin\ \frac{l}{2R}=2arcsin\ \frac{l}{400},\delta_\alpha=|\alpha_l'|\delta_l=\frac{2}{\sqrt{1-\left(\frac{l}{400}\right)^2}}\cdot \frac{1}{400}\cdot \delta_l.\\\\ &\ \ When \alpha=55^{\circ} when ,l=2Rsin\ \frac{\alpha}{2}=400sin(27.5^{\circ}) \approx 184.7. because \delta_l=0.1, therefore \delta_\alpha \approx \frac{2}{\sqrt{1-\left(\frac{184.7}{400}\right)^2}}\cdot \frac{1}{400}\cdot 0.1 \approx 0.00056=1'55''. & \end{aligned} from 2l=Rsin 2α have to ,α=2arcsin 2Rl=2arcsin 400l,δα=∣αl′∣δl=1−(400l)22⋅4001⋅δl. When α=55∘ when ,l=2Rsin 2α=400sin(27.5∘)≈184.7. because δl=0.1, therefore δα≈1−(400184.7)22⋅4001⋅0.1≈0.00056=1′55′′.
边栏推荐
- Curve curvature display
- What are the ways to open the JDBC log of Youxuan database
- Drools(3):Drools基础语法(1)
- 基于C51实现led流水灯
- 【QT】详解 *.pro、*.pri、*.prf、*.prl文件
- 软考可以查成绩了,2022年上半年软考成绩查询入口已开通
- File server fastdfs
- On stock price prediction model (3): are you falling into the trap of machine learning
- <二> objectARX开发:创建和编辑基本图形对象
- [QT] how to obtain the number of rows and columns of qtableview and qtablewidget
猜你喜欢

Question: can't download sh shellcheck Please install it manually and some commands of shell script

A guide for you to fully use TS

On stock price prediction model (3): are you falling into the trap of machine learning

Drools(3):Drools基础语法(1)

微信小程序 - 从入门到入土
![[749. Isolate virus]](/img/12/b8c3cdb664f4415d20c2fc5c697a41.png)
[749. Isolate virus]

屏:框贴、0贴合、全贴合
![[hard ten treasures] - 7.2 [dynamic RAM] analysis of the difference between DDR4 and DDR3](/img/e0/690809c029346fbd0889c16d610145.png)
[hard ten treasures] - 7.2 [dynamic RAM] analysis of the difference between DDR4 and DDR3

Getting started with kernel PWN (5)

Drools (2): drools quick start
随机推荐
String and memory functions
20220724 三角函数系的正交性
Contents mismatch at: 08000000H (Flash=FFH Required=00H) ! Too many errors to display !
JIT中的IR工具与JITWatch的下载,编译及使用
QT监听socket事件,使用QSocketNotifier类
替换license是否要重启数据库?
[Star Project] small hat aircraft War (IV)
Curve curvature display
[arm learning (8) AXF tool analysis]
Difference between shape and size ()
强网杯2021 pwn 赛题解析——baby_diary
文件服务器FastDFS
在第一次使用德国小鸡要注意的地方
Do you want to restart the database to replace the license?
123123123
Idea -- use @slf4j to print logs
mySql建表的基本操作 与常见的函数
File server fastdfs
Is it safe to invest in treasury bonds in 2022? How do individuals buy treasury bonds?
Log rotation logrotate