当前位置:网站首页>Advanced Mathematics (Seventh Edition) Tongji University exercises 2-5 personal solutions
Advanced Mathematics (Seventh Edition) Tongji University exercises 2-5 personal solutions
2022-07-26 07:07:00 【Navigator_ Z】
Advanced mathematics ( The seventh edition ) Tongji University exercises 2-5
1. It is known that y = x 3 − x , Calculated at x = 2 Chudang Δ x Respectively equal to 1 , 0.1 , 0.01 At the time of the Δ y And d y . \begin{aligned}&1. \ It is known that y=x^3-x, Calculated at x=2 Chudang \Delta x Respectively equal to 1,0.1,0.01 At the time of the \Delta y And dy.&\end{aligned} 1. It is known that y=x3−x, Calculated at x=2 Chudang Δx Respectively equal to 1,0.1,0.01 At the time of the Δy And dy.
Explain :
Δ y = f ( x + Δ x ) − f ( x ) = ( x + Δ x ) 3 − ( x + Δ x ) − x 3 + x = 3 x ( Δ x ) 2 + 3 x 2 Δ x + ( Δ x ) 3 − Δ x stay x = 2 It's about , Δ x = 1 when , Δ y = 18 , Δ x = 0.1 when , Δ y = 1.161 , Δ x = 0.01 when , Δ y = 0.110601 d y = f ′ ( x ) Δ x = ( 3 x 2 − 1 ) Δ x stay x = 2 It's about , Δ x = 1 when , d y = 11 , Δ x = 0.1 when , d y = 1.1 , Δ x = 0.01 when , d y = 0.11 \begin{aligned} &\ \ \Delta y =f(x+\Delta x)-f(x)=(x+\Delta x)^3-(x+\Delta x)-x^3+x=3x(\Delta x)^2+3x^2\Delta x+(\Delta x)^3-\Delta x\\\\ &\ \ stay x=2 It's about ,\Delta x=1 when ,\Delta y=18,\Delta x=0.1 when ,\Delta y=1.161,\Delta x=0.01 when ,\Delta y=0.110601\\\\ &\ \ dy=f'(x)\Delta x=(3x^2-1)\Delta x\\\\ &\ \ stay x=2 It's about ,\Delta x=1 when ,dy=11,\Delta x=0.1 when ,dy=1.1,\Delta x=0.01 when ,dy=0.11 & \end{aligned} Δy=f(x+Δx)−f(x)=(x+Δx)3−(x+Δx)−x3+x=3x(Δx)2+3x2Δx+(Δx)3−Δx stay x=2 It's about ,Δx=1 when ,Δy=18,Δx=0.1 when ,Δy=1.161,Δx=0.01 when ,Δy=0.110601 dy=f′(x)Δx=(3x2−1)Δx stay x=2 It's about ,Δx=1 when ,dy=11,Δx=0.1 when ,dy=1.1,Δx=0.01 when ,dy=0.11
2. Let's set the function y = f ( x ) The figure of is shown in the figure 2 − 12 , Try in Figure 2 − 12 ( a ) 、 ( b ) 、 ( c ) 、 ( d ) Mark the points respectively in x 0 Of d y 、 Δ y And Δ y − d y , And explain its positive and negative . \begin{aligned}&2. \ Let's set the function y=f(x) The figure of is shown in the figure 2-12, Try in Figure 2-12(a)、(b)、(c)、(d) Mark the points respectively in x_0 Of dy、\Delta y\\\\&\ \ \ \ And \Delta y -dy, And explain its positive and negative .&\end{aligned} 2. Let's set the function y=f(x) The figure of is shown in the figure 2−12, Try in Figure 2−12(a)、(b)、(c)、(d) Mark the points respectively in x0 Of dy、Δy And Δy−dy, And explain its positive and negative .

Explain :

( a ) Δ y > 0 , d y > 0 , Δ y − d y > 0 ( b ) Δ y > 0 , d y > 0 , Δ y − d y < 0 ( c ) Δ y < 0 , d y < 0 , Δ y − d y < 0 ( d ) Δ y < 0 , d y < 0 , Δ y − d y > 0 \begin{aligned} &\ \ (a)\ \Delta y \gt 0, \ dy \gt 0, \ \Delta y-dy \gt 0\\\\ &\ \ (b)\ \Delta y \gt 0, \ dy \gt 0, \ \Delta y-dy \lt 0\\\\ &\ \ (c)\ \Delta y \lt 0, \ dy \lt 0, \ \Delta y-dy \lt 0\\\\ &\ \ (d)\ \Delta y \lt 0, \ dy \lt 0, \ \Delta y-dy \gt 0 & \end{aligned} (a) Δy>0, dy>0, Δy−dy>0 (b) Δy>0, dy>0, Δy−dy<0 (c) Δy<0, dy<0, Δy−dy<0 (d) Δy<0, dy<0, Δy−dy>0
3. Find the differential of the following function : \begin{aligned}&3. \ Find the differential of the following function :&\end{aligned} 3. Find the differential of the following function :
( 1 ) y = 1 x + 2 x ; ( 2 ) y = x s i n 2 x ; ( 3 ) y = x x 2 + 1 ; ( 4 ) y = l n 2 ( 1 − x ) ; ( 5 ) y = x 2 e 2 x ; ( 6 ) y = e − x c o s ( 3 − x ) ; ( 7 ) y = a r c s i n 1 − x 2 ; ( 8 ) y = t a n 2 ( 1 + 2 x 2 ) ; ( 9 ) y = a r c t a n 1 − x 2 1 + x 2 ; ( 10 ) s = A s i n ( ω t + φ ) ( A 、 ω 、 φ Is constant ) . \begin{aligned} &\ \ (1)\ \ y=\frac{1}{x}+2\sqrt{x};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ y=xsin\ 2x;\\\\ &\ \ (3)\ \ y=\frac{x}{\sqrt{x^2+1}};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ y=ln^2(1-x);\\\\ &\ \ (5)\ \ y=x^2e^{2x};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (6)\ \ y=e^{-x}cos(3-x);\\\\ &\ \ (7)\ \ y=arcsin\sqrt{1-x^2};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (8)\ \ y=tan^2(1+2x^2);\\\\ &\ \ (9)\ \ y=arctan\frac{1-x^2}{1+x^2};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (10)\ \ s=Asin(\omega t+\varphi)\ (A、\omega、\varphi Is constant ). & \end{aligned} (1) y=x1+2x; (2) y=xsin 2x; (3) y=x2+1x; (4) y=ln2(1−x); (5) y=x2e2x; (6) y=e−xcos(3−x); (7) y=arcsin1−x2; (8) y=tan2(1+2x2); (9) y=arctan1+x21−x2; (10) s=Asin(ωt+φ) (A、ω、φ Is constant ).
Explain :
( 1 ) d y = y ′ d x = ( − 1 x 2 + 1 x ) d x ( 2 ) d y = y ′ d x = ( s i n 2 x + 2 x c o s 2 x ) d x ( 3 ) d y = y ′ d x = x ′ x 2 + 1 − x ( x 2 + 1 ) ′ x 2 + 1 d x = 1 ( x 2 + 1 ) 3 d x ( 4 ) d y = y ′ d x = ( l n 2 ( 1 − x ) ) ′ d x = 2 l n ( 1 − x ) − 1 1 − x d x = 2 l n ( 1 − x ) x − 1 d x ( 5 ) d y = y ′ d x = ( x 2 e 2 x ) ′ d x = ( 2 x e 2 x + 2 x 2 e 2 x ) d x = 2 x e 2 x ( 1 + x ) d x ( 6 ) d y = y ′ d x = ( e − x c o s ( 3 − x ) ) ′ d x = ( − e − x c o s ( 3 − x ) + e − x s i n ( 3 − x ) ) d x = e − x [ s i n ( 3 − x ) − c o s ( 3 − x ) ] d x ( 7 ) d y = y ′ d x = ( a r c s i n 1 − x 2 ) ′ d x = − x ∣ x ∣ 1 − x 2 d x = { d x 1 − x 2 , − 1 < x < 0 , − d x 1 − x 2 , 0 < x < 1 ( 8 ) d y = y ′ d x = ( t a n 2 ( 1 + 2 x 2 ) ) ′ d x = 8 x s i n ( 1 + 2 x 2 ) c o s 3 ( 1 + 2 x 2 ) d x ( 9 ) d y = y ′ d x = ( a r c t a n 1 − x 2 1 + x 2 ) ′ d x = ( 1 1 + ( 1 − x 2 ) 2 ( 1 + x 2 ) 2 ⋅ ( 1 − x 2 ) ′ ( 1 + x 2 ) − ( 1 − x 2 ) ( 1 + x 2 ) ′ ( 1 + x 2 ) 2 ) d x = − 2 x x 4 + 1 d x ( 10 ) d s = s ′ d t = ( A s i n ( ω t + φ ) ) ′ d t = A ω c o s ( ω t + φ ) d t \begin{aligned} &\ \ (1)\ dy=y'dx=\left(-\frac{1}{x^2}+\frac{1}{\sqrt{x}}\right)dx\\\\ &\ \ (2)\ dy=y'dx=(sin\ 2x+2xcos\ 2x)dx\\\\ &\ \ (3)\ dy=y'dx=\frac{x'\sqrt{x^2+1}-x(\sqrt{x^2+1})'}{x^2+1}dx=\frac{1}{\sqrt{(x^2+1)^3}}dx\\\\ &\ \ (4)\ dy=y'dx=(ln^2(1-x))'dx=2ln(1-x)\frac{-1}{1-x}dx=\frac{2ln(1-x)}{x-1}dx\\\\ &\ \ (5)\ dy=y'dx=(x^2e^{2x})'dx=(2xe^{2x}+2x^2e^{2x})dx=2xe^{2x}(1+x)dx\\\\ &\ \ (6)\ dy=y'dx=(e^{-x}cos(3-x))'dx=(-e^{-x}cos(3-x)+e^{-x}sin(3-x))dx=e^{-x}[sin(3-x)-cos(3-x)]dx\\\\ &\ \ (7)\ dy=y'dx=(arcsin\sqrt{1-x^2})'dx=-\frac{x}{|x|\sqrt{1-x^2}}dx=\begin{cases}\frac{dx}{\sqrt{1-x^2}},-1 \lt x \lt 0,\\\\-\frac{dx}{\sqrt{1-x^2}},0 \lt x \lt 1\end{cases}\\\\ &\ \ (8)\ dy=y'dx=(tan^2(1+2x^2))'dx=\frac{8xsin(1+2x^2)}{cos^3(1+2x^2)}dx\\\\ &\ \ (9)\ dy=y'dx=\left(arctan\frac{1-x^2}{1+x^2}\right)'dx=\left(\frac{1}{1+\frac{(1-x^2)^2}{(1+x^2)^2}}\cdot \frac{(1-x^2)'(1+x^2)-(1-x^2)(1+x^2)'}{(1+x^2)^2}\right)dx=-\frac{2x}{x^4+1}dx\\\\ &\ \ (10)\ ds=s'dt=(Asin(\omega t+\varphi))'dt=A\omega cos(\omega t+\varphi)dt & \end{aligned} (1) dy=y′dx=(−x21+x1)dx (2) dy=y′dx=(sin 2x+2xcos 2x)dx (3) dy=y′dx=x2+1x′x2+1−x(x2+1)′dx=(x2+1)31dx (4) dy=y′dx=(ln2(1−x))′dx=2ln(1−x)1−x−1dx=x−12ln(1−x)dx (5) dy=y′dx=(x2e2x)′dx=(2xe2x+2x2e2x)dx=2xe2x(1+x)dx (6) dy=y′dx=(e−xcos(3−x))′dx=(−e−xcos(3−x)+e−xsin(3−x))dx=e−x[sin(3−x)−cos(3−x)]dx (7) dy=y′dx=(arcsin1−x2)′dx=−∣x∣1−x2xdx=⎩⎨⎧1−x2dx,−1<x<0,−1−x2dx,0<x<1 (8) dy=y′dx=(tan2(1+2x2))′dx=cos3(1+2x2)8xsin(1+2x2)dx (9) dy=y′dx=(arctan1+x21−x2)′dx=⎝⎛1+(1+x2)2(1−x2)21⋅(1+x2)2(1−x2)′(1+x2)−(1−x2)(1+x2)′⎠⎞dx=−x4+12xdx (10) ds=s′dt=(Asin(ωt+φ))′dt=Aωcos(ωt+φ)dt
4. Fill the appropriate function in the following brackets , Make the equation hold : \begin{aligned}&4. \ Fill the appropriate function in the following brackets , Make the equation hold :&\end{aligned} 4. Fill the appropriate function in the following brackets , Make the equation hold :
( 1 ) d ( ) = 2 d x ; ( 2 ) d ( ) = 3 x d x ; ( 3 ) d ( ) = c o s t d t ; ( 4 ) d ( ) = s i n ω x d x ( ω ≠ 0 ) ; ( 5 ) d ( ) = 1 1 + x d x ; ( 6 ) d ( ) = e − 2 x d x ; ( 7 ) d ( ) = 1 x d x ; ( 8 ) d ( ) = s e c 2 3 x d x . \begin{aligned} &\ \ (1)\ \ d(\ \ )=2dx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ d(\ \ )=3xdx;\\\\ &\ \ (3)\ \ d(\ \ )=cos\ tdt;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ d(\ \ )=sin\ \omega xdx\ (\omega \neq 0);\\\\ &\ \ (5)\ \ d(\ \ )=\frac{1}{1+x}dx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (6)\ \ d(\ \ )=e^{-2x}dx;\\\\ &\ \ (7)\ \ d(\ \ )=\frac{1}{\sqrt{x}}dx;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (8)\ \ d(\ \ )=sec^23xdx. & \end{aligned} (1) d( )=2dx; (2) d( )=3xdx; (3) d( )=cos tdt; (4) d( )=sin ωxdx (ω=0); (5) d( )=1+x1dx; (6) d( )=e−2xdx; (7) d( )=x1dx; (8) d( )=sec23xdx.
Explain :
( 1 ) d ( 2 x + C ) = 2 d x , C Is an arbitrary constant ( 2 ) d ( 3 2 x 2 + C ) = 3 x d x , C Is an arbitrary constant ( 3 ) d ( s i n t + C ) = c o s t d t , C Is an arbitrary constant ( 4 ) d ( − 1 ω c o s ω x + C ) = s i n ω x d x , C Is an arbitrary constant ( 5 ) d ( l n ( 1 + x ) + C ) = 1 1 + x d x , C Is an arbitrary constant ( 6 ) d ( − 1 2 e − 2 x + C ) = e − 2 x d x , C Is an arbitrary constant ( 7 ) d ( 2 x + C ) = 1 x d x , C Is an arbitrary constant ( 8 ) d ( 1 3 t a n 3 x + C ) = s e c 2 3 x d x , C Is an arbitrary constant \begin{aligned} &\ \ (1)\ d(2x+C)=2dx,C Is an arbitrary constant \\\\ &\ \ (2)\ d(\frac{3}{2}x^2+C)=3xdx,C Is an arbitrary constant \\\\ &\ \ (3)\ d(sin\ t+C)=cos\ tdt,C Is an arbitrary constant \\\\ &\ \ (4)\ d(-\frac{1}{\omega}cos\ \omega x+C)=sin\ \omega xdx,C Is an arbitrary constant \\\\ &\ \ (5)\ d(ln(1+x)+C)=\frac{1}{1+x}dx,C Is an arbitrary constant \\\\ &\ \ (6)\ d(-\frac{1}{2}e^{-2x}+C)=e^{-2x}dx,C Is an arbitrary constant \\\\ &\ \ (7)\ d(2\sqrt{x}+C)=\frac{1}{\sqrt{x}}dx,C Is an arbitrary constant \\\\ &\ \ (8)\ d(\frac{1}{3}tan\ 3x+C)=sec^23xdx,C Is an arbitrary constant & \end{aligned} (1) d(2x+C)=2dx,C Is an arbitrary constant (2) d(23x2+C)=3xdx,C Is an arbitrary constant (3) d(sin t+C)=cos tdt,C Is an arbitrary constant (4) d(−ω1cos ωx+C)=sin ωxdx,C Is an arbitrary constant (5) d(ln(1+x)+C)=1+x1dx,C Is an arbitrary constant (6) d(−21e−2x+C)=e−2xdx,C Is an arbitrary constant (7) d(2x+C)=x1dx,C Is an arbitrary constant (8) d(31tan 3x+C)=sec23xdx,C Is an arbitrary constant
5. Pictured 2 − 13 Cable shown A O B ⌢ The length of s , The span is 2 l , The lowest point of the cable O Connect with the rod top A B The distance to f , Then the cable length can be calculated according to the following formula s = 2 l ( 1 + 2 f 2 3 l 2 ) , When f Changed Δ f when , How much does the cable length change ? \begin{aligned}&5. \ Pictured 2-13 Cable shown \overset{\LARGE\frown}{AOB} The length of s, The span is 2l, The lowest point of the cable O Connect with the rod top AB The distance to f,\\\\&\ \ \ \ \ Then the cable length can be calculated according to the following formula s=2l\left(1+\frac{2f^2}{3l^2}\right), When f Changed \Delta f when , How much does the cable length change ?&\end{aligned} 5. Pictured 2−13 Cable shown AOB⌢ The length of s, The span is 2l, The lowest point of the cable O Connect with the rod top AB The distance to f, Then the cable length can be calculated according to the following formula s=2l(1+3l22f2), When f Changed Δf when , How much does the cable length change ?

Explain :
s = 2 l ( 1 + 2 f 2 3 l 2 ) , Δ s ≈ d s = 2 l ⋅ 4 f 3 l 2 Δ f = 8 f 3 l Δ f \begin{aligned} &\ \ s=2l\left(1+\frac{2f^2}{3l^2}\right),\Delta s \approx ds=2l \cdot \frac{4f}{3l^2}\Delta f=\frac{8f}{3l}\Delta f & \end{aligned} s=2l(1+3l22f2),Δs≈ds=2l⋅3l24fΔf=3l8fΔf
6. Set the center angle of the fan α = 6 0 ∘ , radius R = 100 c m ( chart 2 − 14 ). If R unchanged , α Reduce 3 0 ′ , Ask about the change of sector area ? And if α unchanged , R Added 1 c m , Ask about the change of sector area ? \begin{aligned}&6. \ Set the center angle of the fan \alpha =60^{\circ}, radius R=100\ cm( chart 2-14). If R unchanged ,\alpha Reduce 30',\\\\&\ \ \ \ \ Ask about the change of sector area ? And if \alpha unchanged ,R Added 1\ cm, Ask about the change of sector area ?&\end{aligned} 6. Set the center angle of the fan α=60∘, radius R=100 cm( chart 2−14). If R unchanged ,α Reduce 30′, Ask about the change of sector area ? And if α unchanged ,R Added 1 cm, Ask about the change of sector area ?

Explain :
Sector area formula S = R 2 2 α , Δ S ≈ d S = R 2 2 Δ α When R = 100 , Δ α = − 3 0 ′ = − π 360 , α = π 3 when , Δ S ≈ 1 2 ⋅ 10 0 2 ⋅ ( − π 360 ) ≈ − 43.63 c m 2 When R = 100 , Δ R = 1 , α = π 3 when , Δ S ≈ π 3 ⋅ 100 ⋅ 1 ≈ 104.72 c m 2 \begin{aligned} &\ \ Sector area formula S=\frac{R^2}{2}\alpha,\Delta S \approx dS=\frac{R^2}{2}\Delta \alpha\\\\ &\ \ When R=100,\Delta \alpha=-30'=-\frac{\pi}{360},\alpha=\frac{\pi}{3} when ,\Delta S \approx \frac{1}{2}\cdot 100^2 \cdot \left(-\frac{\pi}{360}\right) \approx -43.63\ cm^2\\\\ &\ \ When R=100,\Delta R=1,\alpha =\frac{\pi}{3} when ,\Delta S \approx \frac{\pi}{3} \cdot 100 \cdot 1 \approx 104.72\ cm^2 & \end{aligned} Sector area formula S=2R2α,ΔS≈dS=2R2Δα When R=100,Δα=−30′=−360π,α=3π when ,ΔS≈21⋅1002⋅(−360π)≈−43.63 cm2 When R=100,ΔR=1,α=3π when ,ΔS≈3π⋅100⋅1≈104.72 cm2
7. Calculate the approximate value of the following trigonometric function : \begin{aligned}&7. \ Calculate the approximate value of the following trigonometric function :&\end{aligned} 7. Calculate the approximate value of the following trigonometric function :
( 1 ) c o s 2 9 ∘ ; ( 2 ) t a n 13 6 ∘ . \begin{aligned} &\ \ (1)\ \ cos\ 29^{\circ};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ tan\ 136^{\circ}. & \end{aligned} (1) cos 29∘; (2) tan 136∘.
Explain :
( 1 ) c o s 2 9 ∘ = c o s ( π 6 − π 180 ) ≈ c o s π 6 + ( − s i n π 6 ) ⋅ ( − π 180 ) ≈ 3 2 + π 360 ≈ 0.8748. ( 2 ) t a n 13 6 ∘ = t a n ( 3 4 π + π 180 ) ≈ t a n 3 4 π + s e c 2 3 4 π ⋅ π 180 ≈ − 0.9651 \begin{aligned} &\ \ (1)\ cos\ 29^{\circ} = cos\ \left(\frac{\pi}{6}-\frac{\pi}{180}\right) \approx cos\ \frac{\pi}{6}+(-sin\ \frac{\pi}{6}) \cdot \left(-\frac{\pi}{180}\right) \approx \frac{\sqrt{3}}{2}+\frac{\pi}{360} \approx 0.8748.\\\\ &\ \ (2)\ tan\ 136^{\circ} = tan\ \left(\frac{3}{4}\pi+\frac{\pi}{180}\right) \approx tan\ \frac{3}{4}\pi+sec^2\ \frac{3}{4}\pi \cdot \frac{\pi}{180} \approx -0.9651 & \end{aligned} (1) cos 29∘=cos (6π−180π)≈cos 6π+(−sin 6π)⋅(−180π)≈23+360π≈0.8748. (2) tan 136∘=tan (43π+180π)≈tan 43π+sec2 43π⋅180π≈−0.9651
8. Calculate the approximate value of the following inverse trigonometric function : \begin{aligned}&8. \ Calculate the approximate value of the following inverse trigonometric function :&\end{aligned} 8. Calculate the approximate value of the following inverse trigonometric function :
( 1 ) a r c s i n 0.5002 ; ( 2 ) a r c c o s 0.4995. \begin{aligned} &\ \ (1)\ \ arcsin\ 0.5002;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ arccos\ 0.4995. & \end{aligned} (1) arcsin 0.5002; (2) arccos 0.4995.
Explain :
( 1 ) a r c s i n 0.5002 ≈ a r c s i n 0.5 + 1 1 − ( 0.5 ) 2 ⋅ 0.0002 ≈ 3 0 ∘ 4 7 ′ ′ ( 2 ) a r c c o s 0.4995 ≈ a r c c o s 0.5 − 1 1 − ( 0.5 ) 2 ⋅ ( − 0.0005 ) ≈ 6 0 ∘ 2 ′ \begin{aligned} &\ \ (1)\ arcsin\ 0.5002 \approx arcsin\ 0.5+\frac{1}{\sqrt{1-(0.5)^2}}\cdot 0.0002 \approx 30^{\circ}47''\\\\ &\ \ (2) \ arccos\ 0.4995 \approx arccos\ 0.5-\frac{1}{\sqrt{1-(0.5)^2}}\cdot (-0.0005) \approx 60^{\circ}2' & \end{aligned} (1) arcsin 0.5002≈arcsin 0.5+1−(0.5)21⋅0.0002≈30∘47′′ (2) arccos 0.4995≈arccos 0.5−1−(0.5)21⋅(−0.0005)≈60∘2′
9. When ∣ x ∣ More hours , Prove the following approximate formula : \begin{aligned}&9. \ When |x| More hours , Prove the following approximate formula :&\end{aligned} 9. When ∣x∣ More hours , Prove the following approximate formula :
( 1 ) t a n x ≈ x ( x Is the radian value of the angle ); ( 2 ) l n ( 1 + x ) ≈ x ; ( 3 ) 1 + x n ≈ 1 + 1 n x ; ( 4 ) e x ≈ 1 + x . And calculate t a n 4 5 ′ and l n 1.002 Approximate value . \begin{aligned} &\ \ (1)\ \ tan\ x \approx x(x Is the radian value of the angle );\ \ \ \ \ (2)\ \ ln(1+x) \approx x;\\\\ &\ \ (3)\ \ \sqrt[n]{1+x} \approx 1+\frac{1}{n}x;\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (4)\ \ e^x \approx 1+x.\\\\ &\ \ And calculate tan\ 45' and ln\ 1.002 Approximate value . & \end{aligned} (1) tan x≈x(x Is the radian value of the angle ); (2) ln(1+x)≈x; (3) n1+x≈1+n1x; (4) ex≈1+x. And calculate tan 45′ and ln 1.002 Approximate value .
Explain :
( 1 ) t a n x ≈ t a n 0 + ( t a n 0 ) ′ ⋅ x = 0 + s e c 2 0 ⋅ x = x ( 2 ) l n ( 1 + x ) ≈ l n ( 1 + 0 ) + [ l n ( 1 + x ) ] ′ ⋅ x = 0 + 1 1 + 0 x = x ( 3 ) 1 + x n ≈ 1 + 0 n + ( 1 + 0 n ) ′ ⋅ x = 1 + 1 n ( 1 + 0 ) 1 n − 1 ⋅ x = 1 + 1 n x ( 4 ) e x ≈ e 0 + ( e 0 ) ′ ⋅ x = 1 + e 0 x = 1 + x . t a n 4 5 ′ = t a n 0.0131 ≈ 0.0131 , l n ( 1.002 ) ≈ 0.002. \begin{aligned} &\ \ (1)\ tan\ x \approx tan\ 0+(tan\ 0)'\cdot x =0+sec^2\ 0\cdot x=x\\\\ &\ \ (2)\ ln(1+x) \approx ln(1+0)+[ln(1+x)]'\cdot x=0+\frac{1}{1+0}x=x\\\\ &\ \ (3)\ \sqrt[n]{1+x} \approx \sqrt[n]{1+0}+(\sqrt[n]{1+0})'\cdot x=1+\frac{1}{n}(1+0)^{\frac{1}{n}-1}\cdot x=1+\frac{1}{n}x\\\\ &\ \ (4)\ e^x \approx e^0+(e^0)'\cdot x=1+e^0x=1+x.\\\\ &\ \ tan\ 45' = tan\ 0.0131 \approx 0.0131,ln(1.002) \approx 0.002. & \end{aligned} (1) tan x≈tan 0+(tan 0)′⋅x=0+sec2 0⋅x=x (2) ln(1+x)≈ln(1+0)+[ln(1+x)]′⋅x=0+1+01x=x (3) n1+x≈n1+0+(n1+0)′⋅x=1+n1(1+0)n1−1⋅x=1+n1x (4) ex≈e0+(e0)′⋅x=1+e0x=1+x. tan 45′=tan 0.0131≈0.0131,ln(1.002)≈0.002.
10. Calculate the approximate values of the following roots : \begin{aligned}&10. \ Calculate the approximate values of the following roots :&\end{aligned} 10. Calculate the approximate values of the following roots :
( 1 ) 996 3 ; ( 2 ) 65 6 . \begin{aligned} &\ \ (1)\ \ \sqrt[3]{996};\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (2)\ \ \sqrt[6]{65}. & \end{aligned} (1) 3996; (2) 665.
Explain :
( 1 ) because 1 + x n ≈ 1 + x n , therefore 996 3 = 1000 − 4 3 = 1 − 4 1000 3 ≈ 10 [ 1 + 1 3 ( − 4 1000 ) ] ≈ 9.987 ( 2 ) 65 6 = 64 + 1 6 = 2 1 + 1 64 6 ≈ 2 ( 1 + 1 6 ⋅ 1 64 ) ≈ 2.0052 \begin{aligned} &\ \ (1)\ because \sqrt[n]{1+x} \approx 1+\frac{x}{n}, therefore \sqrt[3]{996} = \sqrt[3]{1000-4}=\sqrt[3]{1-\frac{4}{1000}} \approx 10\left[1+\frac{1}{3}\left(-\frac{4}{1000}\right)\right] \approx 9.987\\\\ &\ \ (2)\ \sqrt[6]{65}=\sqrt[6]{64+1}=2\sqrt[6]{1+\frac{1}{64}} \approx 2\left(1+\frac{1}{6}\cdot \frac{1}{64}\right) \approx 2.0052 & \end{aligned} (1) because n1+x≈1+nx, therefore 3996=31000−4=31−10004≈10[1+31(−10004)]≈9.987 (2) 665=664+1=261+641≈2(1+61⋅641)≈2.0052
11. When calculating the volume of the sphere , The accuracy is required to be 2 % within . Ask at this time to measure the diameter D The relative error of cannot exceed much ? \begin{aligned}&11. \ When calculating the volume of the sphere , The accuracy is required to be 2\% within . Ask at this time to measure the diameter D The relative error of cannot exceed much ?&\end{aligned} 11. When calculating the volume of the sphere , The accuracy is required to be 2% within . Ask at this time to measure the diameter D The relative error of cannot exceed much ?
Explain :
The volume formula of the sphere is V = 1 6 π R 3 , therefore d V = 1 6 π D 3 , d V = π 2 D 2 Δ D , because ∣ d V V ∣ = ∣ π 2 D 2 Δ D 1 6 π D 3 ∣ = 3 ∣ Δ D D ∣ ≤ 2 % , obtain ∣ Δ D D ∣ ≤ 0.02 3 ≈ 0.667 % \begin{aligned} &\ \ The volume formula of the sphere is V=\frac{1}{6}\pi R^3, therefore dV=\frac{1}{6}\pi D^3,dV=\frac{\pi}{2}D^2\Delta D,\\\\ &\ \ because \left|\frac{dV}{V}\right|=\left|\frac{\frac{\pi}{2}D^2\Delta D}{\frac{1}{6}\pi D^3}\right|=3\left|\frac{\Delta D}{D}\right| \le 2\%, obtain \left|\frac{\Delta D}{D}\right| \le \frac{0.02}{3} \approx 0.667\% & \end{aligned} The volume formula of the sphere is V=61πR3, therefore dV=61πD3,dV=2πD2ΔD, because ∣∣VdV∣∣=∣∣61πD32πD2ΔD∣∣=3∣∣DΔD∣∣≤2%, obtain ∣∣DΔD∣∣≤30.02≈0.667%
12. The production of a factory is shown in the figure 2 − 15 Sector plate shown , radius R = 200 m m , Center angle required α by 5 5 ∘ . During product inspection , Generally, the chord length is measured l To indirectly measure the central angle α . If you measure the chord length l Error in δ l = 0.1 m m , Ask about the central angle measurement error caused by this δ α How much is the ? \begin{aligned}&12. \ The production of a factory is shown in the figure 2-15 Sector plate shown , radius R=200\ mm, Center angle required \alpha by 55^{\circ}. During product inspection ,\\\\&\ \ \ \ \ \ Generally, the chord length is measured l To indirectly measure the central angle \alpha. If you measure the chord length l Error in \delta_l=0.1\ mm,\\\\&\ \ \ \ \ \ Ask about the central angle measurement error caused by this \delta_\alpha How much is the ?&\end{aligned} 12. The production of a factory is shown in the figure 2−15 Sector plate shown , radius R=200 mm, Center angle required α by 55∘. During product inspection , Generally, the chord length is measured l To indirectly measure the central angle α. If you measure the chord length l Error in δl=0.1 mm, Ask about the central angle measurement error caused by this δα How much is the ?

Explain :
from l 2 = R s i n α 2 have to , α = 2 a r c s i n l 2 R = 2 a r c s i n l 400 , δ α = ∣ α l ′ ∣ δ l = 2 1 − ( l 400 ) 2 ⋅ 1 400 ⋅ δ l . When α = 5 5 ∘ when , l = 2 R s i n α 2 = 400 s i n ( 27. 5 ∘ ) ≈ 184.7 . because δ l = 0.1 , therefore δ α ≈ 2 1 − ( 184.7 400 ) 2 ⋅ 1 400 ⋅ 0.1 ≈ 0.00056 = 1 ′ 5 5 ′ ′ . \begin{aligned} &\ \ from \frac{l}{2}=Rsin\ \frac{\alpha}{2} have to ,\alpha=2arcsin\ \frac{l}{2R}=2arcsin\ \frac{l}{400},\delta_\alpha=|\alpha_l'|\delta_l=\frac{2}{\sqrt{1-\left(\frac{l}{400}\right)^2}}\cdot \frac{1}{400}\cdot \delta_l.\\\\ &\ \ When \alpha=55^{\circ} when ,l=2Rsin\ \frac{\alpha}{2}=400sin(27.5^{\circ}) \approx 184.7. because \delta_l=0.1, therefore \delta_\alpha \approx \frac{2}{\sqrt{1-\left(\frac{184.7}{400}\right)^2}}\cdot \frac{1}{400}\cdot 0.1 \approx 0.00056=1'55''. & \end{aligned} from 2l=Rsin 2α have to ,α=2arcsin 2Rl=2arcsin 400l,δα=∣αl′∣δl=1−(400l)22⋅4001⋅δl. When α=55∘ when ,l=2Rsin 2α=400sin(27.5∘)≈184.7. because δl=0.1, therefore δα≈1−(400184.7)22⋅4001⋅0.1≈0.00056=1′55′′.
边栏推荐
- LeetCode刷题1:题目分类
- The results of the soft test can be checked, and the entry to query the results of the soft test has been opened in the first half of 2022
- buuReserve(4)
- MySQL intent lock
- 屏:框贴、0贴合、全贴合
- [QT] detailed explanation of *.pro, *.pri, *.prf, *.prl files
- "XXXX" is running, which may cause the system to jam, reduce the standby time, and click Close "
- Make a chase game with pyGame
- Drools (4): drools basic syntax (2)
- Press in and pop-up sequence of "Niuke | daily question" stack
猜你喜欢

“蔚来杯“2022牛客暑期多校训练营1补题记录(ACDGIJ)

28. Implement strstr() implement strstr()

LTS(Light-Task-Scheduler)

NPM command

问题:Can‘t download sh shellcheck. Please install it manually及shell脚本的一些命令使用

How to use Hyper-V in win10 Home Edition

Realize the full link grayscale based on Apache APIs IX through MSE

vulnhub Lampião: 1

Rectification ideas for the previous article

Curl post request on the server, using postman tool for parameter conversion
随机推荐
Heap parsing and heap sorting
PMP customs formula, don't hurry to recite it
Summarize and learn STM32 to create project template
Drools (4): drools basic syntax (2)
Getting started with kernel PWN (5)
Flame diagram analysis Flink backpressure
buuReserve(4)
On the difference between Eval and assert
MySQL self incrementing lock
“蔚来杯“2022牛客暑期多校训练营1补题记录(ACDGIJ)
[Star Project] small hat aircraft War (II)
XSS-labs(1-10)闯关详解
Drools(4):Drools基础语法(2)
字符串和内存函数
Common CMD instructions
A guide for you to fully use TS
NIO实现
【无标题】转载
Basic operations and common functions of MySQL table creation
Manifest merger failed with multiple errors, see logs