当前位置:网站首页>20220724 三角函数系的正交性
20220724 三角函数系的正交性
2022-07-26 06:54:00 【能吃辣吗】
三角函数系定义为: { 1 , sin x , cos x , sin 2 x , cos 2 x , ⋯ , sin n x , cos n x , ⋯ } \{1,\sin x, \cos x, \sin 2x, \cos 2x,\cdots, \sin nx, \cos nx, \cdots\} { 1,sinx,cosx,sin2x,cos2x,⋯,sinnx,cosnx,⋯}正交性是指任意两个不同函数的乘积在区间 [ − π , π ] [-\pi,\pi] [−π,π] 内积分为0,即 ∫ − π π sin n x cos n x d x = 0 \int_{-\pi}^{\pi} \sin nx \cos nx \text{ d} x=0 ∫−ππsinnxcosnx dx=0 ∫ − π π cos n x cos m x d x = 0 , m ≠ n \int_{-\pi}^{\pi} \cos nx \cos mx \text{ d} x=0, m\neq n ∫−ππcosnxcosmx dx=0,m=n ∫ − π π sin m x d x = 0 \int_{-\pi}^{\pi} \sin mx \text{ d} x=0 ∫−ππsinmx dx=0
对于第一个和第三个等式,由于 sin n x cos n x \sin nx \cos nx sinnxcosnx 和 sin m x \sin mx sinmx 是奇函数,所以成立。
对于第二个等式,证明过程如下:
∫ − π π cos n x cos m x d x = 1 m ∫ − π π cos n x d sin m x = 1 m cos n x sin m x ∣ − π π − 1 m ∫ − π π sin m x d cos n x = n m ∫ − π π sin m x sin n x d x \begin{align*}\int_{-\pi}^{\pi} \cos nx \cos mx \text{ d} x&=\frac{1}{m}\int_{-\pi}^{\pi} \cos nx \text{ d} \sin mx \\ &=\frac{1}{m}\cos nx \sin mx |_{-\pi}^\pi -\frac{1}{m}\int_{-\pi}^{\pi} \sin mx \text{ d} \cos nx \\ &=\frac{n}{m} \int_{-\pi}^{\pi} \sin mx \sin nx \text{ d}x \end{align*} ∫−ππcosnxcosmx dx=m1∫−ππcosnx dsinmx=m1cosnxsinmx∣−ππ−m1∫−ππsinmx dcosnx=mn∫−ππsinmxsinnx dx
进一步可知,
∫ − π π cos n x cos m x d x − ∫ − π π sin m x sin n x d x = ( 1 − m n ) ∫ − π π cos n x cos m x d x \begin{align*}\int_{-\pi}^{\pi} \cos nx \cos mx \text{ d} x - \int_{-\pi}^{\pi} \sin mx \sin nx \text{ d}x = (1-\frac{m}{n}) \int_{-\pi}^{\pi} \cos nx \cos mx \text{ d} x \end{align*} ∫−ππcosnxcosmx dx−∫−ππsinmxsinnx dx=(1−nm)∫−ππcosnxcosmx dx
另外 ∫ − π π cos n x cos m x d x − ∫ − π π sin m x sin n x d x = ∫ − π π cos ( ( m + n ) x ) d x = 0 \begin{align*}\int_{-\pi}^{\pi} \cos nx \cos mx \text{ d} x - \int_{-\pi}^{\pi} \sin mx \sin nx \text{ d}x = \int_{-\pi}^{\pi} \cos ((m+n)x) \text{ d}x \end{align*} = 0 ∫−ππcosnxcosmx dx−∫−ππsinmxsinnx dx=∫−ππcos((m+n)x) dx=0
则可知,若 m ≠ n m\neq n m=n,则有 ∫ − π π cos n x cos m x d x = 0 \int_{-\pi}^{\pi} \cos nx \cos mx \text{ d} x=0 ∫−ππcosnxcosmx dx=0
另,若 m = n m=n m=n,显然有 ∫ − π π cos n x cos m x d x > 0 \int_{-\pi}^{\pi} \cos nx \cos mx \text{ d} x >0 ∫−ππcosnxcosmx dx>0。
证毕。
边栏推荐
- QT listens for socket events and uses qsocketnotifier class
- Acwing- daily question
- XSS labs (1-10) break through details
- Rectification ideas for the previous article
- IV Actual combat - global unified return result class
- Function of hot air pad
- CS5801_HDMI转EDP优势替代LT6711A方案
- Is the passenger flow always low? There is something wrong with the location of your store!
- <二> objectARX开发:创建和编辑基本图形对象
- [Star Project] small hat aircraft War (II)
猜你喜欢

『牛客|每日一题』逆波兰表达式

『期末复习』16/32位微处理器(8086)基本寄存器

软考可以查成绩了,2022年上半年软考成绩查询入口已开通

Is the passenger flow always low? There is something wrong with the location of your store!

浅谈eval与assert一句话木马执行区别

Rectification ideas for the previous article
![[hard ten treasures] - 7.2 [dynamic RAM] analysis of the difference between DDR4 and DDR3](/img/e0/690809c029346fbd0889c16d610145.png)
[hard ten treasures] - 7.2 [dynamic RAM] analysis of the difference between DDR4 and DDR3

Merge_sort

Summarize and learn STM32 to create project template

C#使用log4net插件,输出日志到文件
随机推荐
Docker modifying the MySQL configuration file attached to the host does not take effect?
[hard ten treasures] - 7.2 [dynamic RAM] analysis of the difference between DDR4 and DDR3
Multi-objective collaborative decision-making in supply chain
怎样在win10家庭版中使用Hyper-V
『牛客|每日一题』逆波兰表达式
7. Reverse integer integer
Database performance test (MySQL)
MySQL intent lock
【数据库】CTE(Common Table Expression(公共表表达式))
【无标题】转载
Basic operations and common functions of MySQL table creation
AcWing-每日一题
Torth file read vulnerability (cnvd-2020-27769)
Intention lock
MySQL table read lock
How does the national standard gb28181 protocol easygbs platform realize device video recording and set streaming IP?
MySQL基础篇(二)-- MySQL 基础
Exclusive lock
从Architecture带你认识JVM
服装行业如何实现数字化生产模式