当前位置:网站首页>Part II. S3. intuitionistic fuzzy multi-attribute decision-making method when attribute weight is intuitionistic fuzzy number
Part II. S3. intuitionistic fuzzy multi-attribute decision-making method when attribute weight is intuitionistic fuzzy number
2022-06-13 03:25:00 【Python's path to becoming a God】
3.1 Weighted intuitionistic fuzzy numbers whose attribute weights are intuitionistic fuzzy numbers
attribute
G
j
∈
G
G_{j}\in G
Gj∈G The weight of is intuitionistic fuzzy number
ω
~
j
=
*
ρ
j
,
τ
j
*
(
j
=
1
,
2
,
.
.
.
,
n
)
\tilde{\omega}_{j} = \left\langle\rho_{j},\tau_{j}\right\rangle(j=1,2,...,n)
ω~j=*ρj,τj*(j=1,2,...,n) Meet the conditions
ρ
j
∈
[
0
,
1
]
\rho_{j}\in[0,1]
ρj∈[0,1]、
τ
j
∈
[
0
,
1
]
\tau_{j}\in[0,1]
τj∈[0,1], And
0
≤
ρ
j
+
τ
j
≤
1
0\leq\rho_{j}+\tau_{j}\leq1
0≤ρj+τj≤1, be
F
~
i
j
\tilde{F}_{ij}
F~ij The weighted intuitionistic fuzzy number of is
F
′
~
i
j
=
*
μ
i
j
′
,
ν
i
j
′
*
‾
=
ω
~
j
⊗
F
′
~
i
j
=
*
ρ
j
,
τ
j
*
*
μ
i
j
,
ν
i
j
*
=
*
ρ
j
μ
i
j
,
τ
j
+
ν
i
j
−
τ
j
ν
i
j
*
‾
(3.1)
\begin{aligned} \tilde{F^{'}}_{ij} &= \color{red}{\underline{\left\langle\mu^{'}_{ij},\nu^{'}_{ij}\right\rangle}} \\ &= \tilde{\omega}_{j}\otimes\tilde{F^{'}}_{ij} \\ &= \left\langle\rho_{j},\tau_{j}\right\rangle\left\langle\mu_{ij},\nu_{ij}\right\rangle \\ &= \color{red}{\underline{\left\langle\rho_{j}\mu_{ij},\tau_{j}+\nu_{ij}-\tau_{j}\nu_{ij}\right\rangle}} \tag{3.1} \end{aligned}
F′~ij=*μij′,νij′*=ω~j⊗F′~ij=*ρj,τj**μij,νij*=*ρjμij,τj+νij−τjνij*(3.1)
programme
Y
i
(
1
,
2
,
.
.
.
,
m
)
Y_{i}(1,2,...,m)
Yi(1,2,...,m) The result of weighted intuitionistic fuzzy comprehensive evaluation is
d
~
i
=
ω
~
1
⊗
F
′
~
i
1
⊕
ω
~
2
⊗
F
′
~
i
2
⊕
.
.
.
⊕
ω
~
n
⊗
F
′
~
i
n
=
*
ρ
1
μ
i
1
,
τ
1
+
ν
i
1
−
τ
1
ν
i
1
*
+
*
ρ
2
μ
i
2
,
τ
2
+
ν
i
2
−
τ
2
ν
i
2
*
+
.
.
.
+
*
ρ
n
μ
i
n
,
τ
n
+
ν
i
n
−
τ
n
ν
i
n
*
=
∑
j
=
1
n
*
μ
i
j
′
,
ν
i
j
′
*
\begin{aligned} \tilde{d}_{i} &= \tilde{\omega}_{1} \otimes \tilde{F^{'}}_{i1} \oplus \tilde{\omega}_{2} \otimes \tilde{F^{'}}_{i2} \oplus ... \oplus \tilde{\omega}_{n} \otimes \tilde{F^{'}}_{in}\\ &= \left\langle\rho_{1}\mu_{i1},\tau_{1}+\nu_{i1}-\tau_{1}\nu_{i1}\right\rangle + \left\langle\rho_{2}\mu_{i2},\tau_{2}+\nu_{i2}-\tau_{2}\nu_{i2}\right\rangle + ... + \left\langle\rho_{n}\mu_{in},\tau_{n}+\nu_{in}-\tau_{n}\nu_{in}\right\rangle \\ &= \sum_{j=1}^{n} \left\langle\mu^{'}_{ij},\nu^{'}_{ij}\right\rangle \end{aligned}
d~i=ω~1⊗F′~i1⊕ω~2⊗F′~i2⊕...⊕ω~n⊗F′~in=*ρ1μi1,τ1+νi1−τ1νi1*+*ρ2μi2,τ2+νi2−τ2νi2*+...+*ρnμin,τn+νin−τnνin*=j=1∑n*μij′,νij′*
that ,
d
~
i
=
*
μ
i
′
,
ν
i
′
*
=
∑
j
=
1
n
*
μ
i
j
′
,
ν
i
j
′
*
=
*
1
−
(
1
−
μ
i
1
′
)
(
1
−
μ
i
2
′
)
.
.
.
(
1
−
μ
i
n
′
)
,
ν
i
1
′
ν
i
2
′
.
.
.
ν
i
n
′
*
‾
(3.2)
\color{red} { \begin{aligned} \tilde{d}_{i} &= \left\langle\mu^{'}_{i},\nu^{'}_{i}\right\rangle \\ &= \sum_{j=1}^{n} \left\langle\mu^{'}_{ij},\nu^{'}_{ij}\right\rangle \\ &= \color{red}{\underline{\left\langle1-(1-\mu^{'}_{i1})(1-\mu^{'}_{i2})...(1-\mu^{'}_{in}),\nu^{'}_{i1}\nu^{'}_{i2}...\nu^{'}_{in}\right\rangle}} \tag{3.2} \end{aligned} }
d~i=*μi′,νi′*=j=1∑n*μij′,νij′*=*1−(1−μi1′)(1−μi2′)...(1−μin′),νi1′νi2′...νin′*(3.2)
programme
Y
i
(
i
=
1
,
2
,
.
.
.
,
m
)
Y_{i}\left(i=1,2,...,m\right)
Yi(i=1,2,...,m) Weighted comprehensive evaluation results of
d
~
i
\tilde{d}_{i}
d~i The score value and the exact value of are :
s
(
d
~
i
)
=
μ
i
′
−
ν
i
′
(
i
=
1
,
2
,
.
.
.
,
m
)
,
h
(
d
~
i
)
=
μ
i
′
+
ν
i
′
(
i
=
1
,
2
,
.
.
.
,
m
)
s\left(\tilde{d}_{i}\right) = \mu^{'}_{i}-\nu^{'}_{i}\left(i=1,2,...,m\right),h\left(\tilde{d}_{i}\right) = \mu^{'}_{i}+\nu^{'}_{i}\left(i=1,2,...,m\right)
s(d~i)=μi′−νi′(i=1,2,...,m),h(d~i)=μi′+νi′(i=1,2,...,m)
Using intuitionistic fuzzy number sorting rules , The scheme can be determined
Y
i
(
i
=
1
,
2
,
.
.
.
,
m
)
Y_{i}\left(i=1,2,...,m\right)
Yi(i=1,2,...,m) Order of advantages and disadvantages .
3.2 The analysis steps of multi-attribute decision-making method whose attribute weight is intuitionistic fuzzy number
The steps of multi-attribute decision-making method whose attribute weight is intuitionistic fuzzy number are as follows :
step S1 Determining the scheme set of multi-attribute decision making problem
Y
=
{
Y
1
,
Y
2
,
.
.
.
,
Y
m
}
Y=\left\{Y_{1},Y_{2},...,Y_{m}\right\}
Y={ Y1,Y2,...,Ym} And property sets
G
=
{
G
1
,
G
2
,
.
.
.
,
G
n
}
G=\left\{G_{1},G_{2},...,G_{n}\right\}
G={ G1,G2,...,Gn};
step S2 Obtain the scheme in multi-attribute decision-making problem
Y
i
∈
Y
Y_{i} \in Y
Yi∈Y About attributes
G
j
∈
G
G_{j} \in G
Gj∈G Intuitionistic fuzzy characteristic information , Construct intuitionistic fuzzy decision matrix
F
F
F;
step S3 Determine the intuitionistic fuzzy weight of each attribute of the multi-attribute decision-making problem , Get the intuitionistic fuzzy weight vector of the attribute
ω
~
=
(
ω
~
1
,
ω
~
2
,
.
.
.
,
ω
~
n
)
T
=
(
*
ρ
1
,
τ
1
*
,
*
ρ
2
,
τ
2
*
,
.
.
.
,
*
ρ
n
,
τ
n
*
)
T
\tilde{\omega} = {\left(\tilde{\omega}_{1},\tilde{\omega}_{2},...,\tilde{\omega}_{n}\right)}^{T}={\left(\left\langle\rho_{1},\tau_{1}\right\rangle,\left\langle\rho_{2},\tau_{2}\right\rangle,...,\left\langle\rho_{n},\tau_{n}\right\rangle\right)}^{T}
ω~=(ω~1,ω~2,...,ω~n)T=(*ρ1,τ1*,*ρ2,τ2*,...,*ρn,τn*)T;
step S4 Utilization
F
′
~
i
j
=
*
μ
i
j
′
,
ν
i
j
′
*
=
ω
~
j
⊗
F
′
~
i
j
=
*
ρ
j
,
τ
j
*
*
μ
i
j
,
ν
i
j
*
=
*
ρ
j
μ
i
j
,
τ
j
+
ν
i
j
−
τ
j
ν
i
j
*
\tilde{F^{'}}_{ij} = \left\langle\mu^{'}_{ij},\nu^{'}_{ij}\right\rangle=\tilde{\omega}_{j}\otimes\tilde{F^{'}}_{ij}= \left\langle\rho_{j},\tau_{j}\right\rangle\left\langle\mu_{ij},\nu_{ij}\right\rangle=\left\langle\rho_{j}\mu_{ij},\tau_{j}+\nu_{ij}-\tau_{j}\nu_{ij}\right\rangle
F′~ij=*μij′,νij′*=ω~j⊗F′~ij=*ρj,τj**μij,νij*=*ρjμij,τj+νij−τjνij* Calculate the weighted intuitionistic fuzzy decision matrix of multi-attribute decision-making problem
F
′
=
(
F
′
~
i
j
)
m
×
n
F^{'}={\left(\tilde{F^{'}}_{ij}\right)}_{m×n}
F′=(F′~ij)m×n;
step S5 Utilization
d
~
i
=
*
μ
i
′
,
ν
i
′
*
=
∑
j
=
1
n
*
μ
i
j
′
,
ν
i
j
′
*
=
*
1
−
(
1
−
μ
i
1
′
)
(
1
−
μ
i
2
′
)
.
.
.
(
1
−
μ
i
n
′
)
,
ν
i
1
′
ν
i
2
′
.
.
.
ν
i
n
′
*
\tilde{d}_{i} = \left\langle\mu^{'}_{i},\nu^{'}_{i}\right\rangle = \sum_{j=1}^{n} \left\langle\mu^{'}_{ij},\nu^{'}_{ij}\right\rangle = \left\langle1-(1-\mu^{'}_{i1})(1-\mu^{'}_{i2})...(1-\mu^{'}_{in}),\nu^{'}_{i1}\nu^{'}_{i2}...\nu^{'}_{in}\right\rangle
d~i=*μi′,νi′*=∑j=1n*μij′,νij′*=*1−(1−μi1′)(1−μi2′)...(1−μin′),νi1′νi2′...νin′* Calculation scheme
Y
i
Y_{i}
Yi Weighted intuitionistic fuzzy comprehensive attribute value
d
~
i
(
i
=
1
,
2
,
.
.
.
,
m
)
\tilde{d}_{i}\left(i=1,2,...,m\right)
d~i(i=1,2,...,m);
step S6 Calculation scheme
Y
i
Y_{i}
Yi Weighted intuitionistic fuzzy comprehensive attribute value
d
~
i
\tilde{d}_{i}
d~i Score value of
s
(
d
~
i
)
s\left(\tilde{d}_{i}\right)
s(d~i) And the exact value
h
(
d
~
i
)
h\left(\tilde{d}_{i}\right)
h(d~i), determine
d
~
i
(
i
=
1
,
2
,
.
.
.
,
m
)
\tilde{d}_{i}\left(i=1,2,...,m\right)
d~i(i=1,2,...,m) Do not increase sort order , The ranking results are used to evaluate the scheme
Y
=
{
Y
1
,
Y
2
,
.
.
.
,
Y
m
}
Y=\left\{Y_{1},Y_{2},...,Y_{m}\right\}
Y={ Y1,Y2,...,Ym} Sort the pros and cons .
in
example
3.1
\color{red}{ Example 3.1}
in example 3.1
Consider the evaluation of the effectiveness of the enterprise quality management system . The main purpose of evaluating the operation effectiveness of the quality management system is to find that the operation of the quality management system is imperfect or does not adapt to environmental changes , Improve the management ability and business performance of the organization . Usually from the quality policy objectives (
G
1
G_{1}
G1)、 Product quality stability (
G
2
G_{2}
G2)、 Quality improvement and innovation (
G
3
G_{3}
G3)、 Resource management (
G
4
G_{4}
G4)、 Financial performance (
G
5
G_{5}
G5) And so on . Suppose that by Market Research and expert consultation Obtain five enterprises
Y
i
(
i
=
1
,
2
,
3
,
4
,
5
)
Y_{i}\left(i=1,2,3,4,5\right)
Yi(i=1,2,3,4,5) About attributes
G
j
(
i
=
1
,
2
,
3
,
4
,
5
)
G_{j}\left(i=1,2,3,4,5\right)
Gj(i=1,2,3,4,5) The intuitionistic fuzzy evaluation results are shown in the following table .
G 1 G_1 G1 | G 2 G_2 G2 | G 3 G_3 G3 | G 4 G_4 G4 | G 5 G_5 G5 | |
|---|---|---|---|---|---|
Y 1 Y_1 Y1 | * 0.3 , 0.4 * \langle0.3,0.4\rangle *0.3,0.4* | * 0.2 , 0.2 * \langle0.2,0.2\rangle *0.2,0.2* | * 0.2 , 0.4 * \langle0.2,0.4\rangle *0.2,0.4* | * 0.3 , 0.5 * \langle0.3,0.5\rangle *0.3,0.5* | * 0.4 , 0.5 * \langle0.4,0.5\rangle *0.4,0.5* |
Y 2 Y_2 Y2 | * 0.4 , 0.2 * \langle0.4,0.2\rangle *0.4,0.2* | * 0.4 , 0.3 * \langle0.4,0.3\rangle *0.4,0.3* | * 0.3 , 0.4 * \langle0.3,0.4\rangle *0.3,0.4* | * 0.6 , 0.2 * \langle0.6,0.2\rangle *0.6,0.2* | * 0.8 , 0.1 * \langle0.8,0.1\rangle *0.8,0.1* |
Y 3 Y_3 Y3 | * 0.3 , 0.5 * \langle0.3,0.5\rangle *0.3,0.5* | * 0.5 , 0.2 * \langle0.5,0.2\rangle *0.5,0.2* | * 0.6 , 0.3 * \langle0.6,0.3\rangle *0.6,0.3* | * 0.5 , 0.2 * \langle0.5,0.2\rangle *0.5,0.2* | * 0.9 , 0.0 * \langle0.9,0.0\rangle *0.9,0.0* |
Y 4 Y_4 Y4 | * 0.6 , 0.3 * \langle0.6,0.3\rangle *0.6,0.3* | * 0.7 , 0.2 * \langle0.7,0.2\rangle *0.7,0.2* | * 0.4 , 0.4 * \langle0.4,0.4\rangle *0.4,0.4* | * 0.4 , 0.1 * \langle0.4,0.1\rangle *0.4,0.1* | * 0.7 , 0.2 * \langle0.7,0.2\rangle *0.7,0.2* |
Y 5 Y_5 Y5 | * 0.6 , 0.1 * \langle0.6,0.1\rangle *0.6,0.1* | * 0.3 , 0.1 * \langle0.3,0.1\rangle *0.3,0.1* | * 0.1 , 0.4 * \langle0.1,0.4\rangle *0.1,0.4* | * 0.7 , 0.1 * \langle0.7,0.1\rangle *0.7,0.1* | * 0.5 , 0.2 * \langle0.5,0.2\rangle *0.5,0.2* |
according to Expert consultation 、 The questionnaire survey And so on
G
j
(
i
=
1
,
2
,
3
,
4
,
5
)
G_{j}\left(i=1,2,3,4,5\right)
Gj(i=1,2,3,4,5) The intuitionistic fuzzy weight vector of is
ω
~
=
(
*
0.35
,
0.45
*
,
*
0.65
,
0.20
*
,
*
0.45
,
0.25
*
,
*
0.40
,
0.30
*
,
*
0.25
,
0.45
*
)
T
\tilde{\omega}={\left(\left\langle0.35,0.45\right\rangle,\left\langle0.65,0.20\right\rangle,\left\langle0.45,0.25\right\rangle,\left\langle0.40,0.30\right\rangle,\left\langle0.25,0.45\right\rangle\right)}^{T}
ω~=(*0.35,0.45*,*0.65,0.20*,*0.45,0.25*,*0.40,0.30*,*0.25,0.45*)T. Then enterprise
Y
i
(
i
=
1
,
2
,
3
,
4
,
5
)
Y_{i}\left(i=1,2,3,4,5\right)
Yi(i=1,2,3,4,5) What is the ranking result of the effectiveness of the quality management system ?
The code is as follows :
import numpy as np
# Calculate the weighted intuitionistic fuzzy decision matrix F'
def calculate_weight_IF_matrix(IFD_matrix,IFW_attr):
# IFD_matrix Of shape by (m×2×n), respectively m A plan 、n Intuitionistic fuzzy number of attributes
# IFW_attr Of shape by (2×n) Express n Intuitionistic fuzzy number of attributes
# Calculation [u_ij_'] = [p_j] * [u_ij]
# Calculation [v_ij_'] = [t_j] + [v_ij] - [t_j] * [v_ij]
weighted_IFD_matrix = np.zeros(IFD_matrix.shape)
for i in range(IFD_matrix.shape[0]):
weighted_IFD_matrix[i][0] = IFW_attr[0]*IFD_matrix[i][0]
weighted_IFD_matrix[i][1] = IFW_attr[1] + IFD_matrix[i][1] - IFW_attr[1]*IFD_matrix[i][1]
return weighted_IFD_matrix
# Calculate comprehensive evaluation results
def calculate_assessment_result(weighted_IFD_matrix):
# weighted_IFD_matrix Is a weighted intuitionistic fuzzy decision matrix , Size is (m×2×n), among m Number of solutions 、n Represents the number of attributes
# Initialize the result matrix , Size is (2×m)
result_matrix = np.zeros((2,weighted_IFD_matrix.shape[0]))
for i in range(weighted_IFD_matrix.shape[0]):
mu_i = weighted_IFD_matrix[i][0] # The first i It's a plan mu value
nu_i = weighted_IFD_matrix[i][1] # The first i It's a plan nu value
mu_r = 1
nu_r = 1
# Traverse mu_i, Calculation mu_tmp = (1-mu_1)*(1-mu_2)*...*(1-mu_n)
for value in mu_i:
mu_r *= 1-value
# Traverse nu_i, Calculation nu_result = nu_1*nu_2*...*nu_n
for value in nu_i:
nu_r *= value
# mu_result = 1 - mu_tmp
result_matrix[0][i] = 1 - mu_r
result_matrix[1][i] = nu_r
# Return the result matrix
return result_matrix
# Calculate the score value and sort the schemes
def calculate_scores_and_ranks(result_matrix):
# Calculate the score :
scores = result_matrix[0] - result_matrix[1]
# Get sort index
index = np.argsort(-scores)
return scores,index
# S1. Intuitionistic fuzzy decision matrix F
IFD_matrix = np.array([[[0.3,0.2,0.2,0.3,0.4],[0.4,0.2,0.4,0.5,0.5]],
[[0.4,0.4,0.3,0.6,0.8],[0.2,0.3,0.4,0.2,0.1]],
[[0.3,0.5,0.6,0.5,0.9],[0.5,0.2,0.3,0.2,0.0]],
[[0.6,0.7,0.4,0.4,0.7],[0.3,0.2,0.4,0.1,0.2]],
[[0.6,0.3,0.1,0.7,0.5],[0.1,0.1,0.4,0.1,0.2]]])
print(' Intuitionistic fuzzy decision matrix F:\n',IFD_matrix)
# S2. Intuitionistic fuzzy weight vector of each attribute
IFW_attr = np.array([[0.35,0.65,0.45,0.40,0.25],[0.45,0.20,0.25,0.30,0.45]])
print('\n Intuitionistic fuzzy weight vector of each attribute :\n',IFW_attr)
# S3. Calculate the weighted intuitionistic fuzzy decision matrix F'
weighted_IFD_matrix = calculate_weight_IF_matrix(IFD_matrix,IFW_attr)
print('\n Weighted intuitionistic fuzzy decision matrix F:\n',weighted_IFD_matrix)
# S4. Calculate the intuitionistic fuzzy comprehensive evaluation results R
Result = calculate_assessment_result(weighted_IFD_matrix)
print('\ Intuitionistic fuzzy comprehensive evaluation results R:\n',Result)
# S5. Calculate the score value and sort the schemes
scores,index = calculate_scores_and_ranks(Result)
print('\n Score of each scheme :\n',scores)
print(' Sorting result :\n',index+1)
The calculation results are as follows :
Intuitionistic fuzzy decision matrix F:
[[[0.3 0.2 0.2 0.3 0.4]
[0.4 0.2 0.4 0.5 0.5]]
[[0.4 0.4 0.3 0.6 0.8]
[0.2 0.3 0.4 0.2 0.1]]
[[0.3 0.5 0.6 0.5 0.9]
[0.5 0.2 0.3 0.2 0. ]]
[[0.6 0.7 0.4 0.4 0.7]
[0.3 0.2 0.4 0.1 0.2]]
[[0.6 0.3 0.1 0.7 0.5]
[0.1 0.1 0.4 0.1 0.2]]]
Intuitionistic fuzzy weight vector of each attribute :
[[0.35 0.65 0.45 0.4 0.25]
[0.45 0.2 0.25 0.3 0.45]]
Weighted intuitionistic fuzzy decision matrix F:
[[[0.105 0.13 0.09 0.12 0.1 ]
[0.67 0.36 0.55 0.65 0.725]]
[[0.14 0.26 0.135 0.24 0.2 ]
[0.56 0.44 0.55 0.44 0.505]]
[[0.105 0.325 0.27 0.2 0.225]
[0.725 0.36 0.475 0.44 0.45 ]]
[[0.21 0.455 0.18 0.16 0.175]
[0.615 0.36 0.55 0.37 0.56 ]]
[[0.21 0.195 0.045 0.28 0.125]
[0.505 0.28 0.55 0.37 0.56 ]]]
\ Intuitionistic fuzzy comprehensive evaluation results R:
[[0.43881137 0.66530451 0.72657302 0.75533566 0.61738068]
[0.06251603 0.03011254 0.02454705 0.02523074 0.01611394]]
Score of each scheme :
[0.37629535 0.63519197 0.70202597 0.73010491 0.60126674]
Sorting result :
[4 3 2 5 1
边栏推荐
- Transaction processing in PDO
- Parallel one degree relation query
- Array in PHP array function_ Slice and array_ flip
- 【同步功能】2.0.16-19 版本都有同步功能修复的更新,但未解决问题
- Few-shot Unsupervised Domain Adaptation with Image-to-Class Sparse Similarity Encoding
- C语言程序设计——从键盘任意输入一个字符串(可以包含:字母、数字、标点符号,以及空格字符),计算其实际字符个数并打印输出,即不使用字符串处理函数strlen()编程,但能实现strlen()的功能。
- C method parameter: params
- Install MySQL database
- MySQL learning summary 9: non empty constraints, uniqueness constraints, primary key, auto_ Increment, foreign key, default, etc
- Typical application of ACL
猜你喜欢

Spark Foundation

Open source - campus forum and resource sharing applet

Application framework / capability blueprint

Azure SQL db/dw series (14) -- using query store (3) -- common scenarios
![[JVM Series 5] performance testing tool](/img/94/b9a93fc21caacaf2a2e6421574de5c.jpg)
[JVM Series 5] performance testing tool

English grammar_ Mode adverb position

MySQL transactions and locks (V)

English语法_方式副词-位置
![[JVM series 4] common JVM commands](/img/32/339bf8a2679ca37a285f345ab50f00.jpg)
[JVM series 4] common JVM commands

C simple understanding - arrays and sets
随机推荐
Summary of the latest rail transit (Subway + bus) stops and routes in key cities in China (II)
Nuggets new oil: financial knowledge map data modeling and actual sharing
Mongodb distributed cluster deployment process
Brew tool - "fatal: could not resolve head to a revision" error resolution
On the limit problem of compound function
Azure SQL db/dw series (10) -- re understanding the query store (3) -- configuring the query store
视频播放屡破1000W+,在快手如何利用二次元打造爆款
Complex network analysis capability based on graph database
C语言程序设计——从键盘任意输入一个字符串,计算其实际字符个数并打印输出,要求不能使用字符串处理函数strlen(),使用自定义子函数Mystrlen()实现计算字符个数的功能。
C语言程序设计——从键盘任意输入一个字符串(可以包含:字母、数字、标点符号,以及空格字符),计算其实际字符个数并打印输出,即不使用字符串处理函数strlen()编程,但能实现strlen()的功能。
Use PHP to count command line calls on your computer
Summary of virtualization technology development
Add Yum source to install php74
2-year experience summary to tell you how to do a good job in project management
MySQL learning summary 6: data type, integer, floating point number, fixed-point number, text string, binary string
Isolation level, unreal read, gap lock, next key lock
Typical application of ACL
[azure data platform] ETL tool (7) - detailed explanation of ADF copy data
MySQL transactions and locks (V)
MySQL learning summary 7: create and manage databases, create tables, modify tables, and delete tables