当前位置:网站首页>ln n, n^k , a^n, n!, The limit problem of n^n

ln n, n^k , a^n, n!, The limit problem of n^n

2022-06-22 04:26:00 Love 123 haha

ln ⁡ n < < n k < < a n < < n ! < < n n a n < < b n surface in n → ∞ when , a n far far Small On b n , be lim ⁡ n → ∞ a n b n = 0 \ln n<< n^k<<a^n<<n!<<n^n\\ \\a_n<<b_n Express n\rightarrow\infty when ,a_n Far less than b_n, be \lim\limits_{n\rightarrow \infty}\frac{a_n}{b_n}=0 lnn<<nk<<an<<n!<<nnan<<bn surface in n when ,an far far Small On bn, be nlimbnan=0

lim ⁡ n → ∞ ln ⁡ n n k = 0 , k ∈ N + \lim\limits_{n\rightarrow\infty}\frac{\ln n}{n^k}=0,k\in \N_+ nlimnklnn=0,kN+
k = 1 when k=1 when k=1 when
ln ⁡ n n = ln ⁡ n 1 n = ln ⁡ n n \frac{\ln n}{n}=\ln n^{\frac{1}{n}}=\ln \sqrt[n]{n} nlnn=lnnn1=lnnn
lim ⁡ n → ∞ n n = 1 , n n ≥ 1 \lim\limits_{n\rightarrow \infty} \sqrt[n]{n} = 1,\sqrt[n]{n}\geq1 nlimnn=1,nn1
∀ ε , ∃ N , ∀ n > N , n n < e ε , ∣ ln ⁡ n n ∣ = ln ⁡ n n < ε \forall \varepsilon, \exist N,\forall n>N,\sqrt[n]{n}<e^\varepsilon,|\ln\sqrt[n]{n}|=\ln\sqrt[n]{n}<\varepsilon ε,N,n>N,nn<eε,lnnn=lnnn<ε
therefore lim ⁡ n → ∞ ln ⁡ n n = 0 \lim\limits_{n\rightarrow\infty}\frac{\ln n}{n}=0 nlimnlnn=0
k > 1 k>1 k>1 when
ln ⁡ n n k = ln ⁡ n n ⋅ 1 n k − 1 \frac{\ln n}{n^k}=\frac{\ln n}{n}\cdot\frac{1}{n^{k-1}} nklnn=nlnnnk11
therefore lim ⁡ n → ∞ ln ⁡ n n k = 0 \lim\limits_{n\rightarrow\infty}\frac{\ln n}{n^k}=0 nlimnklnn=0

lim ⁡ n → ∞ n k a n = 0 , a > 1 \lim\limits_{n\rightarrow\infty}\frac{n^k}{a^n}=0,a>1 nlimannk=0,a>1
Make x n = n k a n Make x_n=\frac{n^k}{a^n} Make xn=annk, be x n > 0 x_n>0 xn>0
lim ⁡ n → ∞ x n + 1 x n = 1 a lim ⁡ n → ∞ ( 1 + 1 n ) k = 1 a < 1 \lim\limits_{n\rightarrow\infty}\frac{x_{n+1}}{x_n}=\frac{1}{a}\lim\limits_{n\rightarrow\infty}(1+\frac{1}{n})^k=\frac{1}{a}<1 nlimxnxn+1=a1nlim(1+n1)k=a1<1
∃ N , ∀ n > N , x n + 1 x n < 1 , the With { x n } from n > N after open beginning yes single transfer Deliver reduce Of \exist N,\forall n>N,\frac{x_{n+1}}{x_n}<1, therefore \{x_n\} from n>N Then it starts to decrease monotonically N,n>N,xnxn+1<1, the With { xn} from n>N after open beginning yes single transfer Deliver reduce Of
x n > 0 , the With { x n } Yes Next world , the With { x n } n > N closed Convergence , be { x n } closed Convergence x_n>0, therefore \{x_n\} There is a lower bound , therefore \{x_n\}_{n>N} convergence , be \{x_n\} convergence xn>0, the With { xn} Yes Next world , the With { xn}n>N closed Convergence , be { xn} closed Convergence
set up lim ⁡ n → ∞ x n = A set up \lim\limits_{n\rightarrow\infty}x_n=A set up nlimxn=A
x n + 1 = x n ⋅ 1 a ( 1 + 1 n ) k x_{n+1}=x_n\cdot \frac{1}{a}(1+\frac{1}{n})^k xn+1=xna1(1+n1)k
two edge Same as take extremely limit have to , A = A a , the With A = 0 Take the limit on both sides and get ,A=\frac{A}{a}, therefore A=0 two edge Same as take extremely limit have to ,A=aA, the With A=0
the With lim ⁡ n → ∞ n k a n = 0 , a > 1 therefore \lim\limits_{n\rightarrow\infty}\frac{n^k}{a^n}=0,a>1 the With nlimannk=0,a>1

lim ⁡ n → ∞ a n n ! = 0 , a > 0 \lim\limits_{n\rightarrow\infty}\frac{a^n}{n!}=0,a>0 nlimn!an=0,a>0
0 < a < 1 when 0<a<1 when 0<a<1 when
0 < a n ⋅ a n − 1 ⋅ . . . ⋅ a 1 < a n 0<\frac{a}{n}\cdot\frac{a}{n-1}\cdot...\cdot\frac{a}{1}<a^n 0<nan1a...1a<an
lim ⁡ n → ∞ a n = 0 \lim\limits_{n\rightarrow\infty}a^n=0 nliman=0
the With lim ⁡ n → ∞ a n n ! = 0 therefore \lim\limits_{n\rightarrow\infty}\frac{a^n}{n!}=0 the With nlimn!an=0
a > 1 when a>1 when a>1 when
0 < a n ⋅ a n − 1 ⋅ . . . ⋅ a 1 < a n ⋅ a a ⋅ a a − 1 ⋅ . . . ⋅ a 1 0<\frac{a}{n}\cdot\frac{a}{n-1}\cdot...\cdot\frac{a}{1}<\frac{a}{n}\cdot\frac{a}{a}\cdot\frac{a}{a-1}\cdot...\cdot\frac{a}{1} 0<nan1a...1a<naaaa1a...1a
lim ⁡ n → ∞ a n ⋅ a a ⋅ a a − 1 ⋅ . . . ⋅ a 1 = 0 \lim\limits_{n\rightarrow\infty}\frac{a}{n}\cdot\frac{a}{a}\cdot\frac{a}{a-1}\cdot...\cdot\frac{a}{1}=0 nlimnaaaa1a...1a=0
the With lim ⁡ n → ∞ a n n ! = 0 therefore \lim\limits_{n\rightarrow\infty}\frac{a^n}{n!}=0 the With nlimn!an=0
a = 1 when a=1 when a=1 when
0 < 1 n ⋅ 1 n − 1 ⋅ . . . ⋅ 1 1 < 1 n 0<\frac{1}{n}\cdot\frac{1}{n-1}\cdot...\cdot\frac{1}{1}<\frac{1}{n} 0<n1n11...11<n1
lim ⁡ n → ∞ 1 n = 0 \lim\limits_{n\rightarrow\infty}\frac{1}{n}=0 nlimn1=0
the With lim ⁡ n → ∞ a n n ! = 0 therefore \lim\limits_{n\rightarrow\infty}\frac{a^n}{n!}=0 the With nlimn!an=0

lim ⁡ n → ∞ n ! n n = 0 \lim\limits_{n\rightarrow\infty}\frac{n!}{n^n}=0 nlimnnn!=0
Make x n = n ! n n Make x_n=\frac{n!}{n^n} Make xn=nnn!, be x n > 0 x_n>0 xn>0
x n x n + 1 = ( 1 + 1 n ) n > 1 \frac{x_{n}}{x_{n+1}}=(1+\frac{1}{n})^{n}>1 xn+1xn=(1+n1)n>1
the With { x n } yes single transfer Deliver reduce Count Column therefore \{x_n\} Is a monotonically decreasing sequence the With { xn} yes single transfer Deliver reduce Count Column
x n > 0 , the With { x n } Yes Next world , the With { x n } closed Convergence x_n>0, therefore \{x_n\} There is a lower bound , therefore \{x_n\} convergence xn>0, the With { xn} Yes Next world , the With { xn} closed Convergence
set up lim ⁡ n → ∞ x n = A set up \lim\limits_{n\rightarrow\infty}x_n=A set up nlimxn=A
x n ⋅ ( 1 + 1 n ) n = x n + 1 x_n\cdot (1+\frac{1}{n})^{n}=x_{n+1} xn(1+n1)n=xn+1
two edge Same as take extremely limit have to , e A = A , the With A = 0 Take the limit on both sides and get ,eA=A, therefore A=0 two edge Same as take extremely limit have to ,eA=A, the With A=0
the With lim ⁡ n → ∞ n ! n n = 0 therefore \lim\limits_{n\rightarrow\infty}\frac{n!}{n^n}=0 the With nlimnnn!=0

原网站

版权声明
本文为[Love 123 haha]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/173/202206220421592602.html