当前位置:网站首页>ln n, n^k , a^n, n!, The limit problem of n^n
ln n, n^k , a^n, n!, The limit problem of n^n
2022-06-22 04:26:00 【Love 123 haha】
ln n < < n k < < a n < < n ! < < n n a n < < b n surface in n → ∞ when , a n far far Small On b n , be lim n → ∞ a n b n = 0 \ln n<< n^k<<a^n<<n!<<n^n\\ \\a_n<<b_n Express n\rightarrow\infty when ,a_n Far less than b_n, be \lim\limits_{n\rightarrow \infty}\frac{a_n}{b_n}=0 lnn<<nk<<an<<n!<<nnan<<bn surface in n→∞ when ,an far far Small On bn, be n→∞limbnan=0
lim n → ∞ ln n n k = 0 , k ∈ N + \lim\limits_{n\rightarrow\infty}\frac{\ln n}{n^k}=0,k\in \N_+ n→∞limnklnn=0,k∈N+
k = 1 when k=1 when k=1 when
ln n n = ln n 1 n = ln n n \frac{\ln n}{n}=\ln n^{\frac{1}{n}}=\ln \sqrt[n]{n} nlnn=lnnn1=lnnn
lim n → ∞ n n = 1 , n n ≥ 1 \lim\limits_{n\rightarrow \infty} \sqrt[n]{n} = 1,\sqrt[n]{n}\geq1 n→∞limnn=1,nn≥1
∀ ε , ∃ N , ∀ n > N , n n < e ε , ∣ ln n n ∣ = ln n n < ε \forall \varepsilon, \exist N,\forall n>N,\sqrt[n]{n}<e^\varepsilon,|\ln\sqrt[n]{n}|=\ln\sqrt[n]{n}<\varepsilon ∀ε,∃N,∀n>N,nn<eε,∣lnnn∣=lnnn<ε
therefore lim n → ∞ ln n n = 0 \lim\limits_{n\rightarrow\infty}\frac{\ln n}{n}=0 n→∞limnlnn=0
k > 1 k>1 k>1 when
ln n n k = ln n n ⋅ 1 n k − 1 \frac{\ln n}{n^k}=\frac{\ln n}{n}\cdot\frac{1}{n^{k-1}} nklnn=nlnn⋅nk−11
therefore lim n → ∞ ln n n k = 0 \lim\limits_{n\rightarrow\infty}\frac{\ln n}{n^k}=0 n→∞limnklnn=0
lim n → ∞ n k a n = 0 , a > 1 \lim\limits_{n\rightarrow\infty}\frac{n^k}{a^n}=0,a>1 n→∞limannk=0,a>1
Make x n = n k a n Make x_n=\frac{n^k}{a^n} Make xn=annk, be x n > 0 x_n>0 xn>0
lim n → ∞ x n + 1 x n = 1 a lim n → ∞ ( 1 + 1 n ) k = 1 a < 1 \lim\limits_{n\rightarrow\infty}\frac{x_{n+1}}{x_n}=\frac{1}{a}\lim\limits_{n\rightarrow\infty}(1+\frac{1}{n})^k=\frac{1}{a}<1 n→∞limxnxn+1=a1n→∞lim(1+n1)k=a1<1
∃ N , ∀ n > N , x n + 1 x n < 1 , the With { x n } from n > N after open beginning yes single transfer Deliver reduce Of \exist N,\forall n>N,\frac{x_{n+1}}{x_n}<1, therefore \{x_n\} from n>N Then it starts to decrease monotonically ∃N,∀n>N,xnxn+1<1, the With { xn} from n>N after open beginning yes single transfer Deliver reduce Of
x n > 0 , the With { x n } Yes Next world , the With { x n } n > N closed Convergence , be { x n } closed Convergence x_n>0, therefore \{x_n\} There is a lower bound , therefore \{x_n\}_{n>N} convergence , be \{x_n\} convergence xn>0, the With { xn} Yes Next world , the With { xn}n>N closed Convergence , be { xn} closed Convergence
set up lim n → ∞ x n = A set up \lim\limits_{n\rightarrow\infty}x_n=A set up n→∞limxn=A
x n + 1 = x n ⋅ 1 a ( 1 + 1 n ) k x_{n+1}=x_n\cdot \frac{1}{a}(1+\frac{1}{n})^k xn+1=xn⋅a1(1+n1)k
two edge Same as take extremely limit have to , A = A a , the With A = 0 Take the limit on both sides and get ,A=\frac{A}{a}, therefore A=0 two edge Same as take extremely limit have to ,A=aA, the With A=0
the With lim n → ∞ n k a n = 0 , a > 1 therefore \lim\limits_{n\rightarrow\infty}\frac{n^k}{a^n}=0,a>1 the With n→∞limannk=0,a>1
lim n → ∞ a n n ! = 0 , a > 0 \lim\limits_{n\rightarrow\infty}\frac{a^n}{n!}=0,a>0 n→∞limn!an=0,a>0
0 < a < 1 when 0<a<1 when 0<a<1 when
0 < a n ⋅ a n − 1 ⋅ . . . ⋅ a 1 < a n 0<\frac{a}{n}\cdot\frac{a}{n-1}\cdot...\cdot\frac{a}{1}<a^n 0<na⋅n−1a⋅...⋅1a<an
lim n → ∞ a n = 0 \lim\limits_{n\rightarrow\infty}a^n=0 n→∞liman=0
the With lim n → ∞ a n n ! = 0 therefore \lim\limits_{n\rightarrow\infty}\frac{a^n}{n!}=0 the With n→∞limn!an=0
a > 1 when a>1 when a>1 when
0 < a n ⋅ a n − 1 ⋅ . . . ⋅ a 1 < a n ⋅ a a ⋅ a a − 1 ⋅ . . . ⋅ a 1 0<\frac{a}{n}\cdot\frac{a}{n-1}\cdot...\cdot\frac{a}{1}<\frac{a}{n}\cdot\frac{a}{a}\cdot\frac{a}{a-1}\cdot...\cdot\frac{a}{1} 0<na⋅n−1a⋅...⋅1a<na⋅aa⋅a−1a⋅...⋅1a
lim n → ∞ a n ⋅ a a ⋅ a a − 1 ⋅ . . . ⋅ a 1 = 0 \lim\limits_{n\rightarrow\infty}\frac{a}{n}\cdot\frac{a}{a}\cdot\frac{a}{a-1}\cdot...\cdot\frac{a}{1}=0 n→∞limna⋅aa⋅a−1a⋅...⋅1a=0
the With lim n → ∞ a n n ! = 0 therefore \lim\limits_{n\rightarrow\infty}\frac{a^n}{n!}=0 the With n→∞limn!an=0
a = 1 when a=1 when a=1 when
0 < 1 n ⋅ 1 n − 1 ⋅ . . . ⋅ 1 1 < 1 n 0<\frac{1}{n}\cdot\frac{1}{n-1}\cdot...\cdot\frac{1}{1}<\frac{1}{n} 0<n1⋅n−11⋅...⋅11<n1
lim n → ∞ 1 n = 0 \lim\limits_{n\rightarrow\infty}\frac{1}{n}=0 n→∞limn1=0
the With lim n → ∞ a n n ! = 0 therefore \lim\limits_{n\rightarrow\infty}\frac{a^n}{n!}=0 the With n→∞limn!an=0
lim n → ∞ n ! n n = 0 \lim\limits_{n\rightarrow\infty}\frac{n!}{n^n}=0 n→∞limnnn!=0
Make x n = n ! n n Make x_n=\frac{n!}{n^n} Make xn=nnn!, be x n > 0 x_n>0 xn>0
x n x n + 1 = ( 1 + 1 n ) n > 1 \frac{x_{n}}{x_{n+1}}=(1+\frac{1}{n})^{n}>1 xn+1xn=(1+n1)n>1
the With { x n } yes single transfer Deliver reduce Count Column therefore \{x_n\} Is a monotonically decreasing sequence the With { xn} yes single transfer Deliver reduce Count Column
x n > 0 , the With { x n } Yes Next world , the With { x n } closed Convergence x_n>0, therefore \{x_n\} There is a lower bound , therefore \{x_n\} convergence xn>0, the With { xn} Yes Next world , the With { xn} closed Convergence
set up lim n → ∞ x n = A set up \lim\limits_{n\rightarrow\infty}x_n=A set up n→∞limxn=A
x n ⋅ ( 1 + 1 n ) n = x n + 1 x_n\cdot (1+\frac{1}{n})^{n}=x_{n+1} xn⋅(1+n1)n=xn+1
two edge Same as take extremely limit have to , e A = A , the With A = 0 Take the limit on both sides and get ,eA=A, therefore A=0 two edge Same as take extremely limit have to ,eA=A, the With A=0
the With lim n → ∞ n ! n n = 0 therefore \lim\limits_{n\rightarrow\infty}\frac{n!}{n^n}=0 the With n→∞limnnn!=0
边栏推荐
- CAPL学习之路-以太网函数
- When the move protocol beta is in progress, the ecological core equity Momo is divided
- 二叉树线索化
- Laravel implements soft deletion
- 音频帧大小的计算
- yum命令
- Axios get parameter transfer splicing database fields
- Window common shortcut keys
- PHP connection to mysql8.0 reports an error: illuminate\database\queryexception
- Wisdom, agriculture, rural areas and farmers digital Wang Ning: Tips for beginners on the first five days of trading
猜你喜欢

Basic operation of sequence table

With this set of templates, it is easier to play with weekly, monthly and annual reports

树的存储结构

Idea installation and use tutorial

KS004 基于SSH通讯录系统设计与实现

About SSM integration, this is enough ~ (nanny level hands-on tutorial)

Laravel realizes file (picture) uploading

利用PuTTY配置端口映射,实现外网对服务器的访问

"Defi moral paradox" behind solend farce

Active learning overview, strategy and uncertainty measurement
随机推荐
Huffman tree
Idea installation and use tutorial
With these websites, do you still worry about job hopping without raising your salary?
有了这几个刷题网站,还愁跳槽不涨薪?
IDEA安装及其使用详解教程
The continuous function of pytoch
What is a forum virtual host? How to choose?
系统整理|这个模型开发前的重要步骤有多少童鞋忘记细心做好(实操)
"Defi moral paradox" behind solend farce
Wechat applet uploading seven cattle cloud laravel
On the income of enterprise executives
tinymce. Init() browser compatibility issue
首個女性向3A手遊要來了?獲IGN認可,《以閃亮之名》能否突出重圍
Basic concept of graph
With this set of templates, it is easier to play with weekly, monthly and annual reports
torch DDP Training
Redis和MySQL如何保持数据一致性?强一致性,弱一致性,最终一致性
Idea blue screen solution
Bubble sort
Some details