当前位置:网站首页>【图像去噪】基于双立方插值和稀疏表示实现图像去噪matlab源码
【图像去噪】基于双立方插值和稀疏表示实现图像去噪matlab源码
2022-07-25 15:58:00 【Matlab科研工作室】
1 内容介绍
本文解决了从单个低分辨率输入图像生成超分辨率 (SR) 图像的问题。我们从压缩感知的角度来解决这个问题。低分辨率图像被视为高分辨率图像的下采样版本,假设其补丁相对于原型信号原子的过完备字典具有稀疏表示。压缩感知的原理保证了在温和的条件下,稀疏表示可以正确地从下采样信号中恢复出来。我们将证明稀疏性的有效性作为规范否则不适定的超分辨率问题的先验。我们进一步表明,从与输入图像具有相似统计性质的训练图像中随机选择的一小组原始补丁通常可以作为一个好的字典,因为计算的表示是稀疏的,而恢复的高分辨率图像具有竞争力甚至质量优于其他 SR 方法生成的图像。
2 仿真代码
% =========================================================================% Simple demo codes for image super-resolution via sparse representation%% Reference% =========================================================================clear all; clc;% read test imageim_l = imread('Data/Testing/input.bmp');% set parameterslambda = 0.2; % sparsity regularizationoverlap = 4; % the more overlap the better (patch size 5x5)up_scale = 2; % scaling factor, depending on the trained dictionarymaxIter = 20; % if 0, do not use backprojection% load dictionaryload('Dictionary/D_1024_0.15_5.mat');% change color space, work on illuminance onlyim_l_ycbcr = rgb2ycbcr(im_l);im_l_y = im_l_ycbcr(:, :, 1);im_l_cb = im_l_ycbcr(:, :, 2);im_l_cr = im_l_ycbcr(:, :, 3);% image super-resolution based on sparse representation[im_h_y] = ScSR(im_l_y, 2, Dh, Dl, lambda, overlap);[im_h_y] = backprojection(im_h_y, im_l_y, maxIter);% upscale the chrominance simply by "bicubic"[nrow, ncol] = size(im_h_y);im_h_cb = imresize(im_l_cb, [nrow, ncol], 'bicubic');im_h_cr = imresize(im_l_cr, [nrow, ncol], 'bicubic');im_h_ycbcr = zeros([nrow, ncol, 3]);im_h_ycbcr(:, :, 1) = im_h_y;im_h_ycbcr(:, :, 2) = im_h_cb;im_h_ycbcr(:, :, 3) = im_h_cr;im_h = ycbcr2rgb(uint8(im_h_ycbcr));% bicubic interpolation for referenceim_b = imresize(im_l, [nrow, ncol], 'bicubic');% read ground truth imageim = imread('Data/Testing/gnd.bmp');% compute PSNR for the illuminance channelbb_rmse = compute_rmse(im, im_b);sp_rmse = compute_rmse(im, im_h);bb_psnr = 20*log10(255/bb_rmse);sp_psnr = 20*log10(255/sp_rmse);% show the imagesfigure,subplot(131),imshow(im_l);title('原图')subplot(132),imshow(im_h);title(['PSNR for 稀疏表示',num2str( sp_psnr)]);subplot(133), imshow(im_b);title(['PSNR for 双立方插值',num2str(bb_psnr)]);
3 运行结果

4 参考文献
[1]王国权, 张扬, 李彦锋,等. 一种基于稀疏表示的图像去噪算法[J]. 工业仪表与自动化装置, 2013.
[2]刘美娟. 基于MATLAB的图像去噪研究[C]// 挑战与机遇:2010高校GIS论坛. 0.
[3]郭晓峰, 陈钊正, 刘圣卿,等. 一种基于图像稀疏表达的图像去噪方法及系统:, CN109727219A[P]. 2019.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。
边栏推荐
- Shared lock
- 30 lines write the concurrency tool class yourself (semaphore, cyclicbarrier, countdownlatch)
- Record Locks(记录锁)
- Activity review | July 6 Anyuan AI X machine heart series lecture No. 2 | MIT professor Max tegmark shares "symbiotic evolution of human and AI"
- Data system partition design - partition and secondary index
- MySQL tutorial 67- filter duplicate data using distinct
- 【IJCAI 2022】参数高效的大模型稀疏训练方法,大幅减少稀疏训练所需资源
- 【莎士比亚:保持做人的乐趣】
- 哪个led显示屏厂家更好
- 0x80131500打不开微软商店的解决办法
猜你喜欢

Which led display manufacturer is better

华为2023届提前批预热开始!左 神的程序代码面试指南终派上用场

Visual studio 2022 view class diagram

食品安全丨无处不在的冷冻食品,你真的了解吗?

终极套娃 2.0 | 云原生交付的封装

Product dynamics - Android 13 high-efficiency adaptation new upgrade

MATLAB optimization tool manopt installation

Redis distributed lock, it's really impossible without it

Okaleido上线聚变Mining模式,OKA通证当下产出的唯一方式
![[wechat applet] detailed explanation of applet host environment](/img/57/582c07f6e6443f9f139fb1af225ea4.png)
[wechat applet] detailed explanation of applet host environment
随机推荐
Ice 100g network card fragment message hash problem
如何构建面向海量数据、高实时要求的企业级OLAP数据引擎?
只有1000元能买什么理财产品赚钱?
MQTT X CLI 正式发布:强大易用的 MQTT 5.0 命令行工具
开发者如何为React Native选择合适的数据库
MySQL explicit lock
Leetcode:528. select randomly according to the weight [ordinary random failure + prefix and dichotomy]
Circulaindicator component, which makes the indicator style more diversified
Leetcode:6127. Number of high-quality number pairs [bit operation finding rules + the sum of two numbers is greater than or equal to K + dichotomy]
Basic usage of MFC thread afxbeginthread, passing multiple parameters
Why is preparestatement better and safer?
Golang review summary
Waterfall flow layout
Lazy loading of pictures
Which led display manufacturer is better
乐观锁悲观锁适用场景
Boomi荣获“多元化最佳首席执行官奖”和“职业成长最佳公司奖”,在大型公司类别中跻身50强
How Google cloud disk is associated with Google colab
权限管理-删除菜单(递归)
Wavelet transform --dwt2 and wavedec2