当前位置:网站首页>【图像去噪】基于双立方插值和稀疏表示实现图像去噪matlab源码
【图像去噪】基于双立方插值和稀疏表示实现图像去噪matlab源码
2022-07-25 15:58:00 【Matlab科研工作室】
1 内容介绍
本文解决了从单个低分辨率输入图像生成超分辨率 (SR) 图像的问题。我们从压缩感知的角度来解决这个问题。低分辨率图像被视为高分辨率图像的下采样版本,假设其补丁相对于原型信号原子的过完备字典具有稀疏表示。压缩感知的原理保证了在温和的条件下,稀疏表示可以正确地从下采样信号中恢复出来。我们将证明稀疏性的有效性作为规范否则不适定的超分辨率问题的先验。我们进一步表明,从与输入图像具有相似统计性质的训练图像中随机选择的一小组原始补丁通常可以作为一个好的字典,因为计算的表示是稀疏的,而恢复的高分辨率图像具有竞争力甚至质量优于其他 SR 方法生成的图像。
2 仿真代码
% =========================================================================% Simple demo codes for image super-resolution via sparse representation%% Reference% =========================================================================clear all; clc;% read test imageim_l = imread('Data/Testing/input.bmp');% set parameterslambda = 0.2; % sparsity regularizationoverlap = 4; % the more overlap the better (patch size 5x5)up_scale = 2; % scaling factor, depending on the trained dictionarymaxIter = 20; % if 0, do not use backprojection% load dictionaryload('Dictionary/D_1024_0.15_5.mat');% change color space, work on illuminance onlyim_l_ycbcr = rgb2ycbcr(im_l);im_l_y = im_l_ycbcr(:, :, 1);im_l_cb = im_l_ycbcr(:, :, 2);im_l_cr = im_l_ycbcr(:, :, 3);% image super-resolution based on sparse representation[im_h_y] = ScSR(im_l_y, 2, Dh, Dl, lambda, overlap);[im_h_y] = backprojection(im_h_y, im_l_y, maxIter);% upscale the chrominance simply by "bicubic"[nrow, ncol] = size(im_h_y);im_h_cb = imresize(im_l_cb, [nrow, ncol], 'bicubic');im_h_cr = imresize(im_l_cr, [nrow, ncol], 'bicubic');im_h_ycbcr = zeros([nrow, ncol, 3]);im_h_ycbcr(:, :, 1) = im_h_y;im_h_ycbcr(:, :, 2) = im_h_cb;im_h_ycbcr(:, :, 3) = im_h_cr;im_h = ycbcr2rgb(uint8(im_h_ycbcr));% bicubic interpolation for referenceim_b = imresize(im_l, [nrow, ncol], 'bicubic');% read ground truth imageim = imread('Data/Testing/gnd.bmp');% compute PSNR for the illuminance channelbb_rmse = compute_rmse(im, im_b);sp_rmse = compute_rmse(im, im_h);bb_psnr = 20*log10(255/bb_rmse);sp_psnr = 20*log10(255/sp_rmse);% show the imagesfigure,subplot(131),imshow(im_l);title('原图')subplot(132),imshow(im_h);title(['PSNR for 稀疏表示',num2str( sp_psnr)]);subplot(133), imshow(im_b);title(['PSNR for 双立方插值',num2str(bb_psnr)]);
3 运行结果

4 参考文献
[1]王国权, 张扬, 李彦锋,等. 一种基于稀疏表示的图像去噪算法[J]. 工业仪表与自动化装置, 2013.
[2]刘美娟. 基于MATLAB的图像去噪研究[C]// 挑战与机遇:2010高校GIS论坛. 0.
[3]郭晓峰, 陈钊正, 刘圣卿,等. 一种基于图像稀疏表达的图像去噪方法及系统:, CN109727219A[P]. 2019.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。
边栏推荐
- Copy a word style template to another document
- TypeError: Unrecognized value type: <class ‘str‘> ParserError: Unknown string format
- Redis distributed lock, it's really impossible without it
- 泰雷兹推出解决方案,助力SAP客户控制云端数据
- 开发者如何为React Native选择合适的数据库
- Release of v6.5.1/2/3 series of versions of Xingyun housekeeper: the ability of database OpenAPI continues to be strengthened
- 只有1000元能买什么理财产品赚钱?
- 通用测试用例写作规范
- 推荐收藏,这或许是最全的类别型特征的编码方法总结
- R语言使用gt包和gtExtras包漂亮地显示表格数据:gt_bar_plot函数和gt_plt_bar_pct函数可视化百分比条形图、原始数据的百分比条形、缩放后的数据的百分比条形、指定数据对齐宽度
猜你喜欢
![Leetcode:528. select randomly according to the weight [ordinary random failure + prefix and dichotomy]](/img/fb/8178388f8c9ac80d95140378d24238.png)
Leetcode:528. select randomly according to the weight [ordinary random failure + prefix and dichotomy]

用递归进行数组求和

Save the image with gaussdb (for redis), and the recommended business can easily reduce the cost by 60%

报表工具的二次革命

# JWT 图解

Product upgrade observation station in June

Okaleido上线聚变Mining模式,OKA通证当下产出的唯一方式

Okaleido launched the fusion mining mode, which is the only way for Oka to verify the current output

Recommended collection, which is probably the most comprehensive coding method summary of category type features
![[JS advanced] JS regular correlation functions and regular objects_ 02](/img/a0/27bf3f5146a5774eb3167a69d1e3cf.png)
[JS advanced] JS regular correlation functions and regular objects_ 02
随机推荐
MySQL explicit lock
How to build an enterprise level OLAP data engine for massive data and high real-time requirements?
[Shakespeare: keep the fun of being a man]
面试8家公司,1周拿了5个offer,分享一下自己的心得
MySQL教程68-AS 设置别名
通用测试用例写作规范
Which led display manufacturer is better
权限管理-删除菜单(递归)
Win11桌面切换快捷键是什么?Win11快速切换桌面的方法
Upgrade esxi6.7.0 to 7.0u3f (updated on July 12, 2022)
MySQL isolation level transactions
MySQL tutorial 67- filter duplicate data using distinct
面试突击:为什么 TCP 需要 3 次握手?
Baseband simulation system experiment of 4pam in Gaussian channel and Rayleigh channel
TypeError: Unrecognized value type: <class ‘str‘> ParserError: Unknown string format
MySQL乐观锁
Endnote cannot edit range resolution
tkinter模块高级操作(一)—— 透明按钮、透明文本框、自定义按钮及自定义文本框
How matlab produces random complex sequences
Zhaoqi Kechuang high-quality overseas returnee talent entrepreneurship and innovation service platform, online live broadcast Roadshow