当前位置:网站首页>20211005 Hermite matrix and some properties
20211005 Hermite matrix and some properties
2022-06-13 09:03:00 【What's my name】
Hermite matrix : a i j a_{ij} aij And a j i a_{ji} aji conjugate , That is, the real part is equal , The imaginary part is the opposite .
Hermite Some properties of matrix
(1) set up A ∈ C r m × n ( r > 0 ) \boldsymbol{A} \in \mathbf{C}_{r}^{m \times n}(r>0) A∈Crm×n(r>0), be A H A \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} AHA yes Hermite matrix , And their eigenvalues are non negative real numbers ;
(2) rank ( A H A ) = rank A \operatorname{rank}\left(\boldsymbol{A}^{\mathrm{H}} \boldsymbol{A}\right)=\operatorname{rank} \boldsymbol{A} rank(AHA)=rankA;
(3) set up A ∈ C m × n \boldsymbol{A} \in \mathbf{C}^{m \times n} A∈Cm×n, be A = O \boldsymbol{A}=\boldsymbol{O} A=O If and only if A H A = O \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A}=\boldsymbol{O} AHA=O. These conclusions ask the reader to prove .
Proof. (1) Hermite Matrix means A yes A The conjugate transposition of , because A H A = ( A H A ) H \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} = \left( \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} \right)^{\mathrm{H}} AHA=(AHA)H, therefore A H A \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} AHA yes
Hermite matrix . because x H A H A x = ( A x ) H A x ⩾ 0 \boldsymbol{x}^{\mathrm{H}}\boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x}=\left( \boldsymbol{A} \boldsymbol{x} \right)^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x} \geqslant 0 xHAHAx=(Ax)HAx⩾0
For any nonzero x \boldsymbol{x} x, therefore A H A \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} AHA
The eigenvalues of are all nonnegative real numbers .(2) For a certain x ∈ C n \boldsymbol{x} \in \mathbf{C}^{n} x∈Cn, If A x = 0 \boldsymbol{A} \boldsymbol{x}=0 Ax=0, Can be launched A H A x = 0 \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x}=0 AHAx=0; For a certain x ∈ C n \boldsymbol{x} \in \mathbf{C}^{n} x∈Cn, If A H A x = 0 \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x}=0 AHAx=0, be x H A H A x = ( A x ) H A x = 0 \boldsymbol{x}^{\mathrm{H}}\boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x}=\left( \boldsymbol{A} \boldsymbol{x} \right)^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x}=0 xHAHAx=(Ax)HAx=0, You can get A x = 0 \boldsymbol{A} \boldsymbol{x}=0 Ax=0. The zero space is the same , Zero space has the same dimension .
Consider the number of columns of the matrix = The maximum number of linearly independent groups ( Rank )+ Zero space dimension , A H A \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} AHA and A \boldsymbol{A} A Same number of columns for , Zero space is the same , So the rank is the same .
(3) If A = O \boldsymbol{A}=\boldsymbol{O} A=O, be A H A = O \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A}=\boldsymbol{O} AHA=O establish ; If A H A = O \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A}=\boldsymbol{O} AHA=O, For any x ∈ C n \boldsymbol{x} \in \mathbf{C}^{n} x∈Cn, Yes x H A H A x = ( A x ) H A x = 0 \boldsymbol{x}^{\mathrm{H}}\boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x}=\left( \boldsymbol{A} \boldsymbol{x} \right)^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x}=0 xHAHAx=(Ax)HAx=0, That is, for any x ∈ C n \boldsymbol{x} \in \mathbf{C}^{n} x∈Cn, Yes A x = 0 \boldsymbol{A} \boldsymbol{x}=0 Ax=0, On the other hand A \boldsymbol{A} A Any row vector of , With all x ∈ C n \boldsymbol{x} \in \mathbf{C}^{n} x∈Cn vertical , that A \boldsymbol{A} A All lines of are O \boldsymbol{O} O, in other words A = O \boldsymbol{A}=\boldsymbol{O} A=O.
Definition 4. 11 set up A ∈ C r m × n ( r > 0 ) , A H A \boldsymbol{A} \in \mathbf{C}_{r}^{m \times n}(r>0), \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} A∈Crm×n(r>0),AHA The eigenvalue of is
λ 1 ⩾ λ 2 ⩾ ⋯ ⩾ λ r > λ r + 1 = ⋯ = λ n = 0 \lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{r}>\lambda_{r+1}=\cdots=\lambda_{n}=0 λ1⩾λ2⩾⋯⩾λr>λr+1=⋯=λn=0 said σ i = λ i ( i = 1 , 2 , ⋯ , n ) \sigma_{i}=\sqrt{\lambda_{i}}(i=1,2, \cdots, n) σi=λi(i=1,2,⋯,n) by A \boldsymbol{A} A The singular value of ; When A \boldsymbol{A} A Zero matrix , Its singular values are 0. 0 . 0.
Easy to see ,
(1) matrix A \boldsymbol{A} A The number of singular values of is equal to A \boldsymbol{A} A Columns of .
(2) A \boldsymbol{A} A The number of nonzero singular values of is equal to rank A \operatorname{rank} A rankA.
Proof: A \boldsymbol{A} A Zero singular value of , That is to say A H A \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} AHA Zero eigenvalue of , That is to say A H A x = O \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{O} AHAx=O Solution , that A \boldsymbol{A} A The number of zero singular values of is equal to A H A \boldsymbol{A}^{\mathrm{H}} \boldsymbol{A} AHA The dimension of the zero space of .
in addition , A \boldsymbol{A} A The number of all singular values of is equal to A H A \boldsymbol{A}^{\mathrm{H}}\boldsymbol{A} AHA Dimension of .
from (2) It can be seen that , The number of columns in a matrix = The maximum number of linearly independent groups ( Rank )+ Zero space dimension , be A \boldsymbol{A} A The number of nonzero singular values of is equal to rank A \operatorname{rank} A rankA.
边栏推荐
- Cmake Learning Series I
- Browser render passes
- 【网络安全】SQL注入新思维之webshell提权
- Completely uninstall PostgreSQL under Linux
- Software Architecture Overview knowledge
- CentOS installing MySQL and setting up remote access
- transforms. ColorJitter(0.3, 0, 0, 0)
- A solution to create a new EXCEL workbook on win10 computer and change the suffix to xlsm (normally it should be xlsx)
- Simulink如何添加模块到Library Browser
- 20211006 线性变换
猜你喜欢

Tutorial (5.0) 03 Security policy * fortiedr * Fortinet network security expert NSE 5

教程篇(5.0) 01. 产品简介及安装 * FortiEDR * Fortinet 网络安全专家 NSE 5

Print an array clockwise

Differences and uses among cookies, localstorage, sessionstorage, and application caching

Diversified tables through TL table row consolidation
Drill down to protobuf - Introduction

Screenshot of cesium implementation scenario

网络安全漏洞分析之重定向漏洞分析

How many TCP connections can a machine create at most?

Knowledge points related to system architecture 1
随机推荐
Cesium view switching, locating, reading files, building data sources, entity control, model control, etc
12. constructor explanation, explicit, initialization list
Collection of various books
Talking about acid of database
GBase 常见网络问题及排查方法
ES6 module import / export summary
Jfinal and swagger integration
Neo4j环境搭建
redis 模糊查询 批量删除
QML compilation specification
[security] how to counter attack from 0 to 1 to become a security engineer with zero Foundation
pytorch统计模型的参数个数
20211108 能观能控,可稳可测
PHP wechat special merchant incoming V3 packaging interface
Pytorch same structure different parameter name model loading weight
Void* pointer
[QNX hypervisor 2.2 user manual] 4.5 building a guest
Download address of QT source code of each version
「解读」华为云桌面说“流畅”的时候,究竟在说什么?
À propos des principes de chiffrement et de décryptage RSA