当前位置:网站首页>Error importing Spacy module - oserror: [e941] can't find model 'en'
Error importing Spacy module - oserror: [e941] can't find model 'en'
2022-07-29 06:10:00 【Quinn-ntmy】
Import spacy Module package :
import spacy
nlp=spacy.load(‘en’)
Report errors :
OSError: [E941] Can’t find model ‘en’. It looks like you’re trying to load a model from a shortcut, which is deprecated as of spaCy v3.0. To load the model, use its full name instead.
resolvent :
take
import spacy
nlp=spacy.load('en')
Change it to
from spacy.lang.en import English
nlp = English()
边栏推荐
- [overview] image classification network
- 1、 Usage of common loss function
- PyTorch基础知识(可入门)
- 三、如何读取视频?
- [network design] convnext:a convnet for the 2020s
- D3.js vertical relationship diagram (with arrows and text description of connecting lines)
- Low rank transfer subspace learning
- 二、深度学习数据增强方法汇总
- 【语义分割】Fully Attentional Network for Semantic Segmentation
- 一、PyTorch Cookbook(常用代码合集)
猜你喜欢
Jianzhi core taocloud full flash SDS helps build high-performance cloud services
【Attention】Visual Attention Network
ML自学笔记5
4、 Application of one hot and loss function
clion+opencv+aruco+cmake配置
Error in installing pyspider under Windows: Please specify --curl dir=/path/to/build/libcurl solution
Configuration and use of Nacos external database
虚假新闻检测论文阅读(四):A novel self-learning semi-supervised deep learning network to detect fake news on...
第三周周报 ResNet+ResNext
Beijing Baode & taocloud jointly build the road of information innovation
随机推荐
[competition website] collect machine learning / deep learning competition website (continuously updated)
[network design] convnext:a convnet for the 2020s
虚假新闻检测论文阅读(三):Semi-supervised Content-based Detection of Misinformation via Tensor Embeddings
基于STM32:情侣互动玩偶(设计方案+源码+3D图纸+AD电路)
Error in installing pyspider under Windows: Please specify --curl dir=/path/to/build/libcurl solution
PyTorch中的模型构建
【Transformer】ATS: Adaptive Token Sampling For Efficient Vision Transformers
PyTorch的数据读取机制
引入Spacy模块出错—OSError: [E941] Can‘t find model ‘en‘.
京微齐力:基于HMEP060的OLED字符显示(及FUXI工程建立演示)
ML16 neural network (2)
迁移学习——Low-Rank Transfer Subspace Learning
逻辑回归-项目实战-信用卡检测任务(下)
一、PyTorch Cookbook(常用代码合集)
二、深度学习数据增强方法汇总
Briefly talk about the difference between pendingintent and intent
GA-RPN:引导锚点的建议区域网络
ML16-神经网络(2)
【TensorRT】将 PyTorch 转化为可部署的 TensorRT
【Transformer】ACMix:On the Integration of Self-Attention and Convolution