当前位置:网站首页>Machine learning (formula derivation and code implementation)--sklearn machine learning library
Machine learning (formula derivation and code implementation)--sklearn machine learning library
2022-08-03 08:34:00 【A Sheng】
一.scikit-learn概述
1.sklearn模型
sklearn全称是scikit-learn,它是一个基于PythonThe machine them library,主要建立在NumPy、Pandas、SciPy和MatplotlibSuch as libraries,Basically covers the common classification、回归、聚类、降维、Model selection and pretreatment module.
2.sklearn源码
下图是sklearn在GitHub上的源代码,Programming language mainly include:91.4%的Python,6.5%的Cython,1.3%的C++和0.8%的Other.如下所示:
二.模型选择和预处理
1.模型选择
解析:网格搜索,交叉验证
2.预处理
解析:评估指标,数据预处理
三.有监督学习模型
Supervised model can be divided into emergent model and the discriminant model,Common emergent model include simple bayesian、HMMAnd implied dirichlet distribution(LDA),Other basic are discriminant model. 1.线性模型
解析:线性回归,对数几率回归,LASSO回归,Ridge回归,线性判别分析(LDA)
2.近邻
3.决策树 解析:ID3,C4.5,CART
4.神经网络
解析:感知机,神经网络
5.支持向量机
解析:线性可分,近似线性可分,线性不可分
6.集成模型
(1)Boosting
解析:AdaBoost,GBDT,XGBoost,LightGBM,CatBoost
(2)Bagging
解析:随机森林
四.无监督学习模型
1.聚类
解析:均值聚类,层次聚类,谱聚类
2.降维
解析:主成分分析(PCA),奇异值分解(SVD)
五.概率模型
1.最大信息熵模型
2.Bayesian probability model
解析:朴素贝叶斯,贝叶斯网络
3.期望最大化(EM)算法
4.概率图模型
解析:隐马尔科夫模型(HMM),条件随机场(CRF)
5.马尔可夫链蒙特卡洛(MCMC)
参考文献:
[1]scikit-learn:https://scikit-learn.org/stable/
[2]scikit-learn(sklearn)官方文档中文版:https://sklearn.apachecn.org/#/?id=scikit-learn-sklearn-官方文档中文版
[3]scikit-learn安装:https://scikit-learn.org/stable/install.html
[4]scikit-learn用户指南:https://scikit-learn.org/stable/user_guide.html
[5]scikit-learn API参考:https://scikit-learn.org/stable/modules/classes.html
[6]scikit-learn例子:https://scikit-learn.org/stable/auto_examples/index.html
[7]scikit-learn博客:https://blog.scikit-learn.org/
[8]scikit-learn教程:https://scikit-learn.org/stable/tutorial/index.html
[9]scikit-learn FAQ:https://scikit-learn.org/stable/faq.html
[10]scikit-learn GitHub:https://github.com/scikit-learn/scikit-learn
[11]scikit-learnDifferent versions of the document:https://scikit-learn.org/dev/versions.html
[12]scikit-learn wiki:https://github.com/scikit-learn/scikit-learn/wiki
[13]scikit-learn版本更新日志:https://scikit-learn.org/stable/whats_new/v1.1.html
[14]scikit-learn开发指南:https://scikit-learn.org/dev/developers/index.html
[15]scikit-learn相关类库:https://scikit-learn.org/stable/related_projects.html
[16]Hugging Face:https://huggingface.co/
[17]《机器学习:公式推导与代码实现》
边栏推荐
猜你喜欢
随机推荐
内存模型之有序性
window的供选数据流
sqlite date field plus one day
Qt 下拉复选框(MultiSelectComboBox)(一) 实现下拉框多选,搜索下拉框内容
《剑指Offer》刷题之打印从1到最大的n位数
牛客 - 鼠标的天选(字符串哈希)
[Kaggle combat] Prediction of the number of survivors of the Titanic (from zero to submission to Kaggle to model saving and restoration)
【Kaggle实战】泰坦尼克号生存人数预测(从零到提交到Kaggle再到模型的保存与恢复)
ArcEngine(一)加载矢量数据
ArcEngine(二)加载地图文档
并发之多把锁和活跃性
ArcEngine(五)用ICommand接口实现放大缩小
【论文笔记】基于动作空间划分的MAXQ自动分层方法
redis stream 实现消息队列
IDEA的database使用教程(使用mysql数据库)
frp:开源内网穿透工具
dflow部署简记
word之个人设置
Docker starts mysql
uni-app 顶部选项卡吸附效果 demo(整理)