当前位置:网站首页>空间金字塔池化 -Spatial Pyramid Pooling(含源码)
空间金字塔池化 -Spatial Pyramid Pooling(含源码)
2022-08-11 05:35:00 【KPer_Yang】
目录
1、Spatial Pyramid Pooling解决的问题
3、Spatial Pyramid Pooling的代码实现
参考:
《Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition》
1、Spatial Pyramid Pooling解决的问题
空间金字塔池化主要用来解决输入图片的分辨率不一致的问题。之前解决图片分辨率不一致使用的是图片缩放或者裁剪,这样容易导致图片信息丢失。两种解决图片分辨率不一致问题的方法的区别如图1.1所示:

图1.1 裁剪、缩放和Spatial Pyramid Pooling的区别
2、Spatial Pyramid Pooling实现原理
如图2.1所示,SPP-Net的实现是由多种不同大小的池化层对特征图进行池化,然后进行向量展平和拼接。文中使用的是16*16、4*4、1*1的池化层,在具体应用到自己的任务中时,可以根据特征图的大小等因素进行更改。同时,当特征图不是长宽相等,需要进行padding操作,并且16*16、4*4都是按照划分网格的方式进行池化,跟普通的池化层的操作有区别。

图2.1 Spatial Pyramid Pooling实现原理图示
3、Spatial Pyramid Pooling的代码实现
import math
def spatial_pyramid_pool(self,previous_conv, num_sample, previous_conv_size, out_pool_size):
'''
previous_conv: a tensor vector of previous convolution layer
num_sample: an int number of image in the batch
previous_conv_size: an int vector [height, width] of the matrix features size of previous convolution layer
out_pool_size: a int vector of expected output size of max pooling layer
returns: a tensor vector with shape [1 x n] is the concentration of multi-level pooling
'''
# print(previous_conv.size())
for i in range(len(out_pool_size)):
# print(previous_conv_size)
h_wid = int(math.ceil(previous_conv_size[0] / out_pool_size[i]))
w_wid = int(math.ceil(previous_conv_size[1] / out_pool_size[i]))
h_pad = (h_wid*out_pool_size[i] - previous_conv_size[0] + 1)/2
w_pad = (w_wid*out_pool_size[i] - previous_conv_size[1] + 1)/2
maxpool = nn.MaxPool2d((h_wid, w_wid), stride=(h_wid, w_wid), padding=(h_pad, w_pad))
x = maxpool(previous_conv)
if(i == 0):
spp = x.view(num_sample,-1)
# print("spp size:",spp.size())
else:
# print("size:",spp.size())
spp = torch.cat((spp,x.view(num_sample,-1)), 1)
return 边栏推荐
猜你喜欢

OA项目之我的会议(会议排座&送审)

CLUSTER DAY03 (Ceph overview, the deployment of Ceph CLUSTER, Ceph block storage)

SECURITY DAY06 ( iptables firewall, filter table control, extended matching, typical application of nat table)

HCIP实验(pap、chap、HDLC、MGRE、RIP)

使用Keras构建GAN,以Mnist为例

View the library ldd that the executable depends on

照片的35x45,300dpi怎么弄

HCIP MGRE\OSPF综合实验

detectron2,手把手教你训练mask_rcnn

arcgis填坑_1
随机推荐
HCIP OSPF/MGRE综合实验
图的拉普拉斯矩阵
HCIP-生成树(802.1D ,标准生成树/802.1W : RSTP 快速生成树/802.1S : MST 多生成树)
pytorch调整模型学习率
CLUSTER DAY03( Ceph概述 、 部署Ceph集群 、 Ceph块存储)
【LeetCode】2034. 股票价格波动(思路+题解)双map
TOP2 Add two numbers
【LeetCode】306.累加数(思路+题解)
vnc remote desktop installation (available for personal testing on 2021-10-20)
会议OA项目之我的会议
xx is not recognized as internal or external command
How Xshell connects to a virtual machine
华为防火墙-1-安全区域
kill 命令
推荐一个好用的IDEA插件---Translation—中英互译
SECURITY DAY03 (one-click deployment of zabbix)
MySQL01
Eight-legged text of mysql
一个小时快速熟悉MySQL基本用法
阿里巴巴规范之POJO类中布尔类型的变量都不要加is前缀详解