当前位置:网站首页>RichTextBox save as picture
RichTextBox save as picture
2022-07-24 22:28:00 【ima_ zhan】
FileStream pngfs = new FileStream("C:\\1.png", FileMode.OpenOrCreate);
RenderTargetBitmap rtb =
new RenderTargetBitmap((int)richTextBox1.ActualWidth, (int)richTextBox1.ActualHeight,
96.0, 96.0, PixelFormats.Default);
rtb.Render(richTextBox1);
BitmapEncoder be = new PngBitmapEncoder();
be.Frames.Add(BitmapFrame.Create(rtb));
be.Save(pngfs);
pngfs.Close();This function can be extended to screenshots of other controls
边栏推荐
- GEE - 数据集介绍MCD12Q1
- 通讯异常判断之通讯心跳信号应用编程
- ACL 2022 | 基于最优传输的对比学习实现可解释的语义文本相似性
- IndexTree2D
- [cloud native kubernetes] kubernetes cluster advanced resource object staterulesets
- AC自动机
- ACL 2022 | comparative learning based on optimal transmission to achieve interpretable semantic text similarity
- 在机器人行业的专业人士眼里,机器人行业目前的情况如何?
- Projection regularization of line point set in PCL point cloud processing (56)
- QT learning vs creating QT items shows instances where object references are not set to objects
猜你喜欢

Sensor experiment - 485 air temperature and humidity

AC automata

单调栈结构练习——子数组最小值的累加和

Gradle learning - gradle advanced instructions

Database - Metadata databasemetadata beginner

Local data enhancement method of icml2022 | graph neural network

Plane regularization of PCL point cloud processing (55)

Integrated swagger learning

【1184. 公交站间的距离】

由斐波那契数列引述到矩阵快速幂技巧
随机推荐
GB、MB、KB分别是什么意思。大小分别是多少
Dialogue with celebrities: where are the opportunities and challenges in the second half when brands gather at the shuzang track?
PCL点云处理之均匀采样抽稀(六十一)
PCL点云处理之直线点集投影规则化(五十六)
C # use SQLite
Helm —— 强大的 Kubernetes 应用的包管理工具
AVL tree of ordered table
Flex layout
SQL语言的通用语法及分类(二)
Win10 解base64
Implementation of graph structure, from point to edge and then to graph
CAD copy commands
How static code analysis works
SVM——针对线性可分(下)
Local data enhancement method of icml2022 | graph neural network
Gradle learning - gradle advanced instructions
Monotonic stack structure
Kubernetes v1.24 is deployed based on containerd
SVM - for linear separability (Part 2)
Monotonic stack structure exercise -- cumulative sum of minimum values of subarrays