当前位置:网站首页>[combinatorics] generating function (property summary | important generating function)*
[combinatorics] generating function (property summary | important generating function)*
2022-07-03 17:55:00 【Programmer community】
List of articles
- One 、 Summary of generated function properties
- Two 、 Generate the correspondence between the function and the sequence
Reference blog :
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
- 【 Combinatorial mathematics 】 Generating function ( The nature of summation )
- 【 Combinatorial mathematics 】 Generating function ( Commutative properties | Derivative property | Integral properties )
One 、 Summary of generated function properties
1 . Generating function Linear properties :
Multiplication :
b
n
=
α
a
n
b_n = \alpha a_n
bn=αan , be
B
(
x
)
=
α
A
(
x
)
B(x) = \alpha A(x)
B(x)=αA(x)
Add :
c
n
=
a
n
+
b
n
c_n = a_n + b_n
cn=an+bn , be
C
(
x
)
=
A
(
x
)
+
B
(
x
)
C(x) = A(x) + B(x)
C(x)=A(x)+B(x)
2 . Shift property of generating function :
To shift backward :
b
(
n
)
=
{
0
,
n
<
l
a
n
−
l
,
n
≥
l
b(n) = \begin{cases} 0, & n < l \\\\ a_{n-l}, & n \geq l \end{cases}
b(n)=⎩⎪⎨⎪⎧0,an−l,n<ln≥l , be
B
(
x
)
=
x
l
A
(
x
)
B(x) = x^l A(x)
B(x)=xlA(x)
Forward shift :
b
n
=
a
n
+
1
b_n = a_{n+1}
bn=an+1 , be
B
(
x
)
=
A
(
x
)
−
∑
n
=
0
l
−
1
a
n
x
n
x
l
B(x) = \cfrac{A(x) - \sum\limits_{n=0}^{l-1} a_nx^n }{x^l}
B(x)=xlA(x)−n=0∑l−1anxn
3 . Generating function Product properties :
c
n
=
∑
i
=
0
n
a
i
b
n
−
i
c_n = \sum\limits_{i=0}^n a_i b_{n-i}
cn=i=0∑naibn−i , Then there are
C
(
x
)
=
A
(
x
)
⋅
B
(
x
)
C(x) = A(x) \cdot B(x)
C(x)=A(x)⋅B(x)
Summation property of generating function :
Sum forward :
b
n
=
∑
i
=
0
n
a
i
b_n = \sum\limits_{i=0}^{n}a_i
bn=i=0∑nai , be
B
(
x
)
=
A
(
x
)
1
−
x
B(x) = \cfrac{A(x)}{1-x}
B(x)=1−xA(x)
Backward summation :
b
n
=
∑
i
=
n
∞
a
i
b_n = \sum\limits_{i=n}^{\infty}a_i
bn=i=n∑∞ai , also
A
(
1
)
=
∑
i
=
n
∞
a
i
A(1) =\sum\limits_{i=n}^{\infty}a_i
A(1)=i=n∑∞ai convergence , be
B
(
x
)
=
A
(
1
)
−
x
A
(
x
)
1
−
x
B(x) = \cfrac{A(1) - xA(x)}{1-x}
B(x)=1−xA(1)−xA(x)
4 . The commutative property of generating function :
b
n
=
α
n
a
n
b_n = \alpha^n a_n
bn=αnan , be
B
(
x
)
=
A
(
α
x
)
B(x) =A( \alpha x)
B(x)=A(αx)
5 . Derivation property of generating function :
b
n
=
n
a
n
b_n = n a_n
bn=nan , be
B
(
x
)
=
x
A
′
(
x
)
B(x) =xA'( x)
B(x)=xA′(x)
6 . Integral property of generating function :
b
n
=
a
n
n
+
1
b_n = \cfrac{a_n}{n+1}
bn=n+1an , be
B
(
x
)
=
1
x
∫
0
x
A
(
x
)
d
x
B(x) =\cfrac{1}{x} \int^{x}_{0} A( x)dx
B(x)=x1∫0xA(x)dx
Two 、 Generate the correspondence between the function and the sequence
Given sequence
{
a
n
}
\{a_n\}
{ an} or
a
n
a_n
an The recursion equation of , Find the generating function
G
(
x
)
G(x)
G(x) , We need to use the properties of series and Some important series ;
Commonly used generation function values :
1
1
1 Sequence correlation :
{
a
n
}
\{a_n\}
{ an} ,
a
n
=
1
n
a_n = 1^n
an=1n ;
A
(
x
)
=
∑
n
=
0
∞
x
n
=
1
1
−
x
\begin{aligned} A(x) & = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \end{aligned}
A(x)=n=0∑∞xn=1−x1
{
a
n
}
\{a_n\}
{ an} ,
a
n
=
(
−
1
)
n
a_n = (-1)^n
an=(−1)n ;
A
(
x
)
=
∑
n
=
0
∞
(
−
1
)
n
x
n
=
1
1
+
x
\begin{aligned} A(x) & = \sum_{n=0}^{\infty} (-1)^n x^n = \frac{1}{1+x} \end{aligned}
A(x)=n=0∑∞(−1)nxn=1+x1
{
a
n
}
\{a_n\}
{ an} ,
a
n
=
k
n
a_n = k^n
an=kn ,
k
k
k As a positive integer ;
A
(
x
)
=
∑
n
=
0
∞
k
n
x
n
=
1
1
−
k
x
\begin{aligned} A(x) & = \sum_{n=0}^{\infty} k^n x^n = \frac{1}{1-kx} \end{aligned}
A(x)=n=0∑∞knxn=1−kx1
Binomial coefficient correlation :
{
a
n
}
\{a_n\}
{ an} ,
a
n
=
(
m
n
)
a_n = \dbinom{m}{n}
an=(nm) ;
A
(
x
)
=
∑
n
=
0
∞
(
m
n
)
x
n
=
(
1
+
x
)
m
\begin{aligned} A(x) & = \sum_{n=0}^{\infty} \dbinom{m}{n} x^n = ( 1 + x ) ^m \end{aligned}
A(x)=n=0∑∞(nm)xn=(1+x)m
Combination number correlation :
{
a
n
}
\{a_n\}
{ an} ,
a
n
=
(
m
+
n
−
1
n
)
a_n = \dbinom{m+n-1}{n}
an=(nm+n−1) ,
m
,
n
m,n
m,n As a positive integer ;
A
(
x
)
=
∑
n
=
0
∞
(
m
+
n
−
1
n
)
x
n
=
1
(
1
−
x
)
m
\begin{aligned} A(x) & = \sum_{n=0}^{\infty} \dbinom{m+n-1}{n} x^n = \frac{1}{ {(1-x)}^m} \end{aligned}
A(x)=n=0∑∞(nm+n−1)xn=(1−x)m1
{
a
n
}
\{a_n\}
{ an} ,
a
n
=
(
−
1
)
n
(
m
+
n
−
1
n
)
a_n = (-1)^n \dbinom{m+n-1}{n}
an=(−1)n(nm+n−1) ,
m
,
n
m,n
m,n As a positive integer ;
A
(
x
)
=
∑
n
=
0
∞
(
−
1
)
n
(
m
+
n
−
1
n
)
x
n
=
1
(
1
+
x
)
m
\begin{aligned} A(x) & = \sum_{n=0}^{\infty} (-1)^n \dbinom{m+n-1}{n} x^n = \frac{1}{ {(1+x)}^m} \end{aligned}
A(x)=n=0∑∞(−1)n(nm+n−1)xn=(1+x)m1
{
a
n
}
\{a_n\}
{ an} ,
a
n
=
(
n
+
1
n
)
a_n = \dbinom{n+1}{n}
an=(nn+1) ,
n
n
n As a positive integer ;
A
(
x
)
=
∑
n
=
0
∞
(
n
+
1
n
)
x
n
=
∑
n
=
0
∞
(
n
+
1
)
x
n
=
1
(
1
−
x
)
2
\begin{aligned} A(x) & = \sum_{n=0}^{\infty} \dbinom{n+1}{n} x^n \\ & = \sum_{n=0}^{\infty} (n+1) x^n \\ & = \frac{1}{ {(1-x)}^2} \end{aligned}
A(x)=n=0∑∞(nn+1)xn=n=0∑∞(n+1)xn=(1−x)21
边栏推荐
- PHP MySQL inserts data
- A. Odd Selection【BruteForce】
- MySQL has been stopped in the configuration interface during installation
- Loop through JSON object list
- Create a new file from templates with bash script - create new file from templates with bash script
- As soon as we enter "remote", we will never regret, and several people will be happy and several people will be sad| Community essay solicitation
- The difference between i++ and ++i: tell their differences easily
- TCP拥塞控制详解 | 3. 设计空间
- 面试官:值为 nil 为什么不等于 nil ?
- [combinatorics] recursive equation (summary of the solution process of recursive equation | homogeneous | double root | non-homogeneous | characteristic root is 1 | exponential form | the bottom is th
猜你喜欢
模块九作业
Records of long objects and long judgments in the stream of list
Implementation of Tetris in C language
Hongmeng fourth training
As soon as we enter "remote", we will never regret, and several people will be happy and several people will be sad| Community essay solicitation
Leetcode Valentine's Day Special - looking for a single dog
互联网医院HIS管理平台源码,在线问诊,预约挂号 智慧医院小程序源码
Module 9 operation
PHP MySQL create database
Getting started with deops
随机推荐
分布式的任务分发框架-Gearman
Introduction to PHP MySQL
互聯網醫院HIS管理平臺源碼,在線問診,預約掛號 智慧醫院小程序源碼
[Tongxin UOS] scanner device management driver installation
Applet with multiple tabs and Swipers + paging of each tab
[linux]centos 7 reports an error when installing MySQL "no package MySQL server available" no package ZABBIX server MySQL available
Codeforces Round #803 (Div. 2) C. 3SUM Closure
How to deploy applications on kubernetes cluster
First day of rhcsa study
Loop through JSON object list
Leetcode 108 converts an ordered array into a binary search tree -- recursive method
Introduction to SolidWorks gear design software tool geartrax
Postfix tips and troubleshooting commands
Inheritance of ES6 class
聊聊支付流程的设计与实现逻辑
PHP MySQL where clause
MySQL has been stopped in the configuration interface during installation
微服务组件Sentinel控制台调用
Distributed task distribution framework gearman
聊聊支付流程的設計與實現邏輯