当前位置:网站首页>[combinatorics] generating function (property summary | important generating function)*
[combinatorics] generating function (property summary | important generating function)*
2022-07-03 17:55:00 【Programmer community】
List of articles
- One 、 Summary of generated function properties
- Two 、 Generate the correspondence between the function and the sequence
Reference blog :
- 【 Combinatorial mathematics 】 Generating function Brief introduction ( Generating function definition | Newton's binomial coefficient | Common generating functions | Related to constants | Related to binomial coefficient | Related to polynomial coefficients )
- 【 Combinatorial mathematics 】 Generating function ( Linear properties | Product properties )
- 【 Combinatorial mathematics 】 Generating function ( Shift property )
- 【 Combinatorial mathematics 】 Generating function ( The nature of summation )
- 【 Combinatorial mathematics 】 Generating function ( Commutative properties | Derivative property | Integral properties )
One 、 Summary of generated function properties
1 . Generating function Linear properties :
Multiplication :
b
n
=
α
a
n
b_n = \alpha a_n
bn=αan , be
B
(
x
)
=
α
A
(
x
)
B(x) = \alpha A(x)
B(x)=αA(x)
Add :
c
n
=
a
n
+
b
n
c_n = a_n + b_n
cn=an+bn , be
C
(
x
)
=
A
(
x
)
+
B
(
x
)
C(x) = A(x) + B(x)
C(x)=A(x)+B(x)
2 . Shift property of generating function :
To shift backward :
b
(
n
)
=
{
0
,
n
<
l
a
n
−
l
,
n
≥
l
b(n) = \begin{cases} 0, & n < l \\\\ a_{n-l}, & n \geq l \end{cases}
b(n)=⎩⎪⎨⎪⎧0,an−l,n<ln≥l , be
B
(
x
)
=
x
l
A
(
x
)
B(x) = x^l A(x)
B(x)=xlA(x)
Forward shift :
b
n
=
a
n
+
1
b_n = a_{n+1}
bn=an+1 , be
B
(
x
)
=
A
(
x
)
−
∑
n
=
0
l
−
1
a
n
x
n
x
l
B(x) = \cfrac{A(x) - \sum\limits_{n=0}^{l-1} a_nx^n }{x^l}
B(x)=xlA(x)−n=0∑l−1anxn
3 . Generating function Product properties :
c
n
=
∑
i
=
0
n
a
i
b
n
−
i
c_n = \sum\limits_{i=0}^n a_i b_{n-i}
cn=i=0∑naibn−i , Then there are
C
(
x
)
=
A
(
x
)
⋅
B
(
x
)
C(x) = A(x) \cdot B(x)
C(x)=A(x)⋅B(x)
Summation property of generating function :
Sum forward :
b
n
=
∑
i
=
0
n
a
i
b_n = \sum\limits_{i=0}^{n}a_i
bn=i=0∑nai , be
B
(
x
)
=
A
(
x
)
1
−
x
B(x) = \cfrac{A(x)}{1-x}
B(x)=1−xA(x)
Backward summation :
b
n
=
∑
i
=
n
∞
a
i
b_n = \sum\limits_{i=n}^{\infty}a_i
bn=i=n∑∞ai , also
A
(
1
)
=
∑
i
=
n
∞
a
i
A(1) =\sum\limits_{i=n}^{\infty}a_i
A(1)=i=n∑∞ai convergence , be
B
(
x
)
=
A
(
1
)
−
x
A
(
x
)
1
−
x
B(x) = \cfrac{A(1) - xA(x)}{1-x}
B(x)=1−xA(1)−xA(x)
4 . The commutative property of generating function :
b
n
=
α
n
a
n
b_n = \alpha^n a_n
bn=αnan , be
B
(
x
)
=
A
(
α
x
)
B(x) =A( \alpha x)
B(x)=A(αx)
5 . Derivation property of generating function :
b
n
=
n
a
n
b_n = n a_n
bn=nan , be
B
(
x
)
=
x
A
′
(
x
)
B(x) =xA'( x)
B(x)=xA′(x)
6 . Integral property of generating function :
b
n
=
a
n
n
+
1
b_n = \cfrac{a_n}{n+1}
bn=n+1an , be
B
(
x
)
=
1
x
∫
0
x
A
(
x
)
d
x
B(x) =\cfrac{1}{x} \int^{x}_{0} A( x)dx
B(x)=x1∫0xA(x)dx
Two 、 Generate the correspondence between the function and the sequence
Given sequence
{
a
n
}
\{a_n\}
{ an} or
a
n
a_n
an The recursion equation of , Find the generating function
G
(
x
)
G(x)
G(x) , We need to use the properties of series and Some important series ;
Commonly used generation function values :
1
1
1 Sequence correlation :
{
a
n
}
\{a_n\}
{ an} ,
a
n
=
1
n
a_n = 1^n
an=1n ;
A
(
x
)
=
∑
n
=
0
∞
x
n
=
1
1
−
x
\begin{aligned} A(x) & = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \end{aligned}
A(x)=n=0∑∞xn=1−x1
{
a
n
}
\{a_n\}
{ an} ,
a
n
=
(
−
1
)
n
a_n = (-1)^n
an=(−1)n ;
A
(
x
)
=
∑
n
=
0
∞
(
−
1
)
n
x
n
=
1
1
+
x
\begin{aligned} A(x) & = \sum_{n=0}^{\infty} (-1)^n x^n = \frac{1}{1+x} \end{aligned}
A(x)=n=0∑∞(−1)nxn=1+x1
{
a
n
}
\{a_n\}
{ an} ,
a
n
=
k
n
a_n = k^n
an=kn ,
k
k
k As a positive integer ;
A
(
x
)
=
∑
n
=
0
∞
k
n
x
n
=
1
1
−
k
x
\begin{aligned} A(x) & = \sum_{n=0}^{\infty} k^n x^n = \frac{1}{1-kx} \end{aligned}
A(x)=n=0∑∞knxn=1−kx1
Binomial coefficient correlation :
{
a
n
}
\{a_n\}
{ an} ,
a
n
=
(
m
n
)
a_n = \dbinom{m}{n}
an=(nm) ;
A
(
x
)
=
∑
n
=
0
∞
(
m
n
)
x
n
=
(
1
+
x
)
m
\begin{aligned} A(x) & = \sum_{n=0}^{\infty} \dbinom{m}{n} x^n = ( 1 + x ) ^m \end{aligned}
A(x)=n=0∑∞(nm)xn=(1+x)m
Combination number correlation :
{
a
n
}
\{a_n\}
{ an} ,
a
n
=
(
m
+
n
−
1
n
)
a_n = \dbinom{m+n-1}{n}
an=(nm+n−1) ,
m
,
n
m,n
m,n As a positive integer ;
A
(
x
)
=
∑
n
=
0
∞
(
m
+
n
−
1
n
)
x
n
=
1
(
1
−
x
)
m
\begin{aligned} A(x) & = \sum_{n=0}^{\infty} \dbinom{m+n-1}{n} x^n = \frac{1}{ {(1-x)}^m} \end{aligned}
A(x)=n=0∑∞(nm+n−1)xn=(1−x)m1
{
a
n
}
\{a_n\}
{ an} ,
a
n
=
(
−
1
)
n
(
m
+
n
−
1
n
)
a_n = (-1)^n \dbinom{m+n-1}{n}
an=(−1)n(nm+n−1) ,
m
,
n
m,n
m,n As a positive integer ;
A
(
x
)
=
∑
n
=
0
∞
(
−
1
)
n
(
m
+
n
−
1
n
)
x
n
=
1
(
1
+
x
)
m
\begin{aligned} A(x) & = \sum_{n=0}^{\infty} (-1)^n \dbinom{m+n-1}{n} x^n = \frac{1}{ {(1+x)}^m} \end{aligned}
A(x)=n=0∑∞(−1)n(nm+n−1)xn=(1+x)m1
{
a
n
}
\{a_n\}
{ an} ,
a
n
=
(
n
+
1
n
)
a_n = \dbinom{n+1}{n}
an=(nn+1) ,
n
n
n As a positive integer ;
A
(
x
)
=
∑
n
=
0
∞
(
n
+
1
n
)
x
n
=
∑
n
=
0
∞
(
n
+
1
)
x
n
=
1
(
1
−
x
)
2
\begin{aligned} A(x) & = \sum_{n=0}^{\infty} \dbinom{n+1}{n} x^n \\ & = \sum_{n=0}^{\infty} (n+1) x^n \\ & = \frac{1}{ {(1-x)}^2} \end{aligned}
A(x)=n=0∑∞(nn+1)xn=n=0∑∞(n+1)xn=(1−x)21
边栏推荐
- 基于人脸识别的课堂考勤系统 tkinter+openpyxl+face_recognition
- Introduction to PHP MySQL
- Gear2021 monthly update - December
- Write a program to process a list container of string type. Find a special value in the container 9.27: and delete it if found. Rewrite the above procedure with deque container.
- i++与++i的区别:通俗易懂的讲述他们的区别
- c# .net 工具生态
- Talk about the design and implementation logic of payment process
- Hongmeng fourth training
- Postfix tips and troubleshooting commands
- Research Report on market demand and investment planning for the development of China's office chair industry, 2022-2028
猜你喜欢
![[combinatorics] recursive equation (summary of the solution process of recursive equation | homogeneous | double root | non-homogeneous | characteristic root is 1 | exponential form | the bottom is th](/img/f1/c96c4a6d34e1ae971f492f4aed5a93.jpg)
[combinatorics] recursive equation (summary of the solution process of recursive equation | homogeneous | double root | non-homogeneous | characteristic root is 1 | exponential form | the bottom is th

Internet Hospital his Management Platform source, online Inquiry, appointment Registration Smart Hospital Small program source

Classroom attendance system based on face recognition tkinter+openpyxl+face_ recognition

(8) HS corner detection

Global and Chinese health care OEM and ODM market status survey and investment planning recommendations report 2022-2028

Talk about the design and implementation logic of payment process

List的stream中Long对象与long判等问题记录

聊聊支付流程的设计与实现逻辑

Win32: analyse du fichier dump pour la défaillance du tas

How to install PHP on Ubuntu 20.04
随机推荐
【统信UOS】扫描仪设备管理驱动安装
分布式的任务分发框架-Gearman
Y is always discrete and can't understand, how to solve it? Answer: read it several times
AcWing 271. Teacher Yang's photographic arrangement [multidimensional DP]
Web-ui automated testing - the most complete element positioning method
1146_ SiCp learning notes_ exponentiation
Brief introduction to the core functions of automatic penetration testing tool
PHP MySQL inserts data
Classroom attendance system based on face recognition tkinter+openpyxl+face_ recognition
国内如何购买Google Colab会员
解决Zabbix用snmp监控网络流量不准的问题
SQL injection database operation foundation
Graduation summary
微服务组件Sentinel控制台调用
As soon as we enter "remote", we will never regret, and several people will be happy and several people will be sad| Community essay solicitation
ArrayList分析3 : 删除元素
互联网医院HIS管理平台源码,在线问诊,预约挂号 智慧医院小程序源码
Talk about the design and implementation logic of payment process
PUT vs. POST for Uploading Files - RESTful API to be Built Using Zend Framework
[combinatorics] generating function (shift property)