当前位置:网站首页>Research Notes (8) Deep Learning and Its Application in WiFi Human Perception (Part 2)
Research Notes (8) Deep Learning and Its Application in WiFi Human Perception (Part 2)
2022-08-02 05:22:00 【CS research GO】
论文题目:Deep Learning and Its Applications to WiFi Human Sensing: A Benchmark and A Tutorial
论文作者:Jianfei Yang, Xinyan Chen, Dazhuo Wang, Han Zou, Chris Xiaoxuan Lu, Sumei Sun, Fellow, IEEE and Lihua Xie, Fellow, IEEE
工作单位:新加坡南洋理工大学,University of Edinburgh, UK, etc
发表刊物:arxiv, pp. 1-17,2022
II. PRELIMINARIES OF WIFI SENSING
A. CSI简介
在WiFi通信中,CSI(信道状态信息)It reflects the diffraction of the wireless signal、Propagation in the physical environment after reflection and scattering,The channel characteristics of the communication link are described.For a pair of transmitter and receiver antennas,CSIMultipath phase shift and amplitude attenuation on each subcarrier are described.与RSS(接收信号强度)相比,CSIThe data has better sensing resolution,在WiFiIt can be regarded as the environment in which the signal propagates“WiFi图像”.在WiFi感知中,CSIThe recording function is provided by a dedicated tool[1]、[2]实现.CSIThe estimate can be expressed as :
H i = ∥ H i ∥ e j ∠ H i H_i=\parallel H_i \parallel e^{j\angle H_i} Hi=∥Hi∥ej∠Hi
其中 ∥ H i ∥ \parallel H_i \parallel ∥Hi∥和 ∠ H i \angle H_i ∠Hi分别代表第 i i iThe magnitude and phase of the subcarriers.
B. CSI工具
| CSI工具 | 带宽 | 子载波数量 | 设备 |
|---|---|---|---|
| Intel 5300 CSI Tool | 20MHz | 30 | Intel 5300 NIC |
| Atheros CSI Tool | 20/40MHz | 56/114 | Atheros NIC |
| Nexmon CSI Tool | 80MHz | 256 | 智能手机&树莓派 |
C. CSIData transformation and cleaning
- Q:如何处理CSIData makes it applicableWiFi感知?
- A1:只使用CSIAmplitude data as input.
- A2:在基于模型的方法中,between the antennasCSIPhase difference as input.
- A3: Use processedCSIDoppler said,例如,提出BVP(Human coordinate velocity profile)to simulate the Doppler features that reflect human motion[31].
D.CSIThe impact of data on the human body


为了将CSIData is combined with deep learning models,This article summarizes what contributes to a better understanding of deep model designCSI数据属性:
- Subcarrier dimension—空间特征
- 时间维度(consecutive packets)----时间特征
- Antenna Dimensions—Resolution and channel characteristics
III. DEEP LEARNING MODELS FOR WIFI SENSING
A.用于WiFiPerceptual deep learning models(2017-2022)

B.WiFiFundamentals of commonly used deep learning models in the field of perception

C.WiFiEvaluation of commonly used deep learning models in the field of perception
- MLP:参数多,收敛速度慢,计算开销大;
- CNN:卷积层过多(>20),The vanishing gradient problem leads to performance degradation;
- RNN:There is a vanishing gradient problem when backpropagating,无法捕获CSI的长期依赖关系;
- LSTM:克服了Vanilla RNN存在的问题;
- Transformer:参数多,训练成本高,And it is difficult to collect a large number of labeled onesCSI数据.
IV. LEARNING METHODS FOR DEEP WIFI SENSING MODELS
- 监督学习:Traditional deep model training relies on supervised learning with large amounts of labeled data,But data collection and labeling is a realityWiFiPerceive application bottlenecks.
- 少样本学习:Since only a small number of samples are required,因此在实际应用中,Few-shot learning helps based on WiFigesture recognition and human body recognition.
- 迁移学习:在WiFiperceive the scene,由于CSIData is highly dependent on the environment,Therefore, cross-domain scenarios are very common.Transfer learning is used to solve cross-domain problems.
- 无监督学习:The model can be strengthened,获得更好的泛化能力.
- 集成学习:Can improve model classification performance,But the computational overhead also grows exponentially.

V. EMPIRICAL STUDIES OF DEEP LEARNING IN WIFI SENSING: A BENCHMARK
A. 实验设置

B. Deep Model Evaluation

C. Learning strategy assessment


VI. DISCUSSIONS AND SUMMARY


PS:Since the paper was published in axvir上的,There are inevitably some omissions in the text.比如图2The three human activities mentioned in the subheading,The actual image involves four activities,And the image source of the upper and lower lines is not given a detailed introduction.
边栏推荐
猜你喜欢
随机推荐
网络 7 层架构
PHP实现阿里云HMAC-SHA1签名方法封装
Excel操作技巧大全
计算属性的学习
全球主要国家地区数据(MySQL数据)
基于sysbench工具的压力测试---MyCat2.0+MySql架构
迭代器与生成器
音视频文件的码率与大小计算
Go的安装使用(一)
侦听器watch及其和计算属性、methods方法的总结
VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tupl
未来智安创始人兼CEO唐伽佳荣膺36氪X·36Under36 “S级创业者”
深度学习基础之批量归一化(BN)
ICMP timestamp请求响应漏洞
ES6中变量的使用及结构赋值
深度学习基础之batch_size
科研笔记(八) 深度学习及其在 WiFi 人体感知中的应用(上)
箭头函数及其this的指向
3个最佳实践助力企业改善供应链安全
企业级的dns服务器的搭建









