当前位置:网站首页>MCS:离散随机变量

MCS:离散随机变量

2022-06-23 03:56:00 今晚打佬虎

Discrete Arbitrary

x x x为一个离散变量,它代表着一个数值的集合, x i x_i xi为集合中的第 i i i个数,( i ∼ 1 → N i \sim 1 \to N i1N),集合中一个特定值 x i x_i xi的概率记为: P ( x i ) = P ( x = x i ) P(x_i) = P(x = x_i) P(xi)=P(x=xi),因此 P ( x 1 ) , . . . P ( x N ) P(x_1), ... P(x_N) P(x1),...P(xN)定义了变量 x x x的概率分布。

∑ i P ( x i ) = 1 \sum_i P(x_i) = 1 iP(xi)=1

变量 x x x的期望和方差:

E ( x ) = ∑ i x i P ( x i ) E(x) = \sum_i x_i P(x_i) E(x)=ixiP(xi)

V ( x ) = E ( x 2 ) − E ( x ) 2 V(x) = E(x^2) - E(x)^2 V(x)=E(x2)E(x)2

E ( x 2 ) = ∑ i x i 2 P ( x i ) E(x^2) = \sum_i x_i^2 P(x_i) E(x2)=ixi2P(xi)

CDF:

F ( x i ) = P ( x < = x i ) F(x_i) = P(x <= x_i) F(xi)=P(x<=xi)

生成服从任意概率分布的随机变量

  1. For each x i x_i xi, find F ( x i ) , i ∼ 1 → N F(x_i), i \sim 1 \to N F(xi),i1N
  2. Generate a random continuous uniform u ∼ U ( 0 , 1 ) u \sim U(0, 1) uU(0,1)
  3. Locate the smallest x i x_i xi where u < F ( x i ) u < F(x_i) u<F(xi)
  4. $ x = x_i$
  5. Return x x x

例:假设 x x x是离散的,服从下面概率分布和累计分布函数:

xP(x)F(x)
00.40.4
10.30.7
20.20.9
30.11.0
  1. 生成一个均匀分布的随机变量: u ∼ U ( 0 , 1 ) , u = 0.58 u \sim U(0, 1), u = 0.58 uU(0,1),u=0.58
  2. u < F ( 1 ) = 0.7 u < F(1) = 0.7 u<F(1)=0.7
  3. x = 1 x = 1 x=1
原网站

版权声明
本文为[今晚打佬虎]所创,转载请带上原文链接,感谢
https://wangjh.blog.csdn.net/article/details/125302507