当前位置:网站首页>Neural network
Neural network
2022-08-02 07:51:00 【Ah Qiangzhen】
人工神经网络
Artificial neurons are the basic building blocks of artificial neural network elements,如下图所示, = [ x 1 , x 2 , x 3 . . . x m ] T , W = [ w 1 , w 2 , . . . w m ] T =\left[ x_1,x_2,x_3...x_m \right] ^T,W=\left[ w_1,w_2,...w_m \right] ^T =[x1,x2,x3...xm]T,W=[w1,w2,...wm]TFor the connection right,So the network input u = ∑ i = 1 m w i x i u=\sum_{i=1}^m{w_ix_i} u=∑i=1mwixi,其向量形式为 u = W T X u=W^TX u=WTX
The picture above for single-layer perceptron neural model,其中mAs the number of neurons in input
v = ∑ i = 1 m w i x i , y = { 1 v ≥ 0 0 v < 0 v=\sum_{i=1}^m{w_ix_i},y=\begin{cases} 1 \quad v\ge 0\\ 0 \quad v<0\\ \end{cases} v=∑i=1mwixi,y={ 1v≥00v<0
Activation function also by excitation function,活化函数,Used to perform the neurons of network input transformation,一般有以下四种:
线性函数 f ( u ) = k u + c f(u)=ku+c f(u)=ku+c
非线性斜面函数 f ( u ) = { γ , u ≥ θ k u , ∣ u ∣ < θ − γ , u ≤ − θ f\left( u \right) =\begin{cases} \gamma ,u\ge \theta\\ ku,\left| u \right|<\theta\\ -\gamma ,u\le -\theta\\ \end{cases} f(u)=⎩⎨⎧γ,u≥θku,∣u∣<θ−γ,u≤−θ
其中 θ , γ \theta ,\gamma θ,γ为非负实数, γ \gamma γReferred to as the saturation value,即 γ \gamma γAs the biggest output neurons阈值函数/阶跃函数
f ( u ) = { β , u > θ − γ , u ≤ θ f\left( u \right) =\begin{cases} \beta ,u>\theta\\ -\gamma ,u\le \theta\\ \end{cases} f(u)={ β,u>θ−γ,u≤θ在logisticReturn to have been introduced insigmoid函数,This function will range minus infinity to infinite is mapped to the(0,1)
sigmoid函数的公式为:
f ( u ) = 1 1 + e − u f\left( u \right) =\frac{1}{1+e^{-u}} f(u)=1+e−u1tanhFunction about educationsigmoid函数要常见一些,This function will range minus infinity to infinite is mapped to the(-1,1),其公式为:
f ( u ) = e u − e u e u + e − u f\left( u \right) =\frac{e^u-e^u}{e^u+e^{-u}} f(u)=eu+e−ueu−eu
例:
Using a single perceptron neural solve the problem of the classification of simple:There are two types of four input vector,Two vector corresponding to the target value as1,The other two vector corresponding to the target value as0,The input vector matrix:
[ − 0.5 − 0.5 0.3 0 − 0.5 0.5 − 0.5 1 ] \left[ \begin{matrix} -0.5& -0.5& 0.3& 0\\ -0.5& 0.5& -0.5& 1\\ \end{matrix} \right] [−0.5−0.5−0.50.50.3−0.501]
其中每一列1Column is the value of an input,Target classification and vectorT=[1,1,0,0].Try to predict new input vector p = [ − 0.5 , 0.2 ] T p=\left[ -0.5,0.2 \right] ^T p=[−0.5,0.2]T的目标值:
from sklearn.linear_model import Perceptron
import numpy as np
x0=np.array([[-0.5,-0.5,0.3,0.0],[-0.5,0.5,-0.5,1.0]]).T
y0=np.array([1,1,0,0])
md=Perceptron().fit(x0,y0)#Construction and fitting model
print("Model coefficients and constant term respectively:",md.coef_,",",md.intercept_)
print("模型精度:",md.score(x0,y0))#模型检验
print("预测值为:",md.predict([[-0.5,0.2]]))

Remember two indicators variables respectively x 1 , x 2 x_1,x_2 x1,x2,For the classification function was obtained v = − 1.3 x 1 − 0.5 x 2 v=-1.3x_1-0.5x_2 v=−1.3x1−0.5x2.New input vectorp的目标值为1
BP神经网络
BPNeural network is the biggest advantage is with strong nonlinear mapping ability,He is mainly used in the following four aspects:
- 函数逼近.With the input vector and the corresponding output vector training a network to approximate a function
- 模式识别
- 预测
- 数据压缩
BPNeural network specific process is as follows:
(1) 初始化,To the connection weight and threshold is given[-1,1]的随机值
(2) Choose a random pattern of X 0 = [ x 1 0 , x 2 0 . . . . x n 0 ] , Y 0 = [ y 1 0 , y 2 0 , . . . y n 0 ] X_0=\left[ x_{1}^{0},x_{2}^{0}....x_{n}^{0} \right] ,Y_0=\left[ y_{1}^{0},y_{2}^{0},...y_{n}^{0} \right] X0=[x10,x20....xn0],Y0=[y10,y20,...yn0]提供给网络
(3)用输入模式、连接权,And the value,计算中间层各单元的输入,然后用sThe middle layer through the calculation of living function of each unit output.
(4)With the output of the middle layer;连接权.And the broad terms of input output layer units,然后用.After activation function calculating the response of the output layer unitsd.
(5)With hope output mode、Network actual output calculation of generalization error output layer units..
(6)With connection powerg、Output layer of generalization error、中间层输出,Calculate the middle tier units generalization error
Yuan generalization errorc、The middle tier units output,修正连接权u,和阈值.Every unit input,Fixed connection weight and threshold.
(7)重新从mA learning model of randomly selected from a pattern of,Namely return step3,Until the network global error functionE小于预先设定的一个极小值,即网络收敛;Or study number is greater than the preset value,The network can't convergence
边栏推荐
猜你喜欢
随机推荐
OC-NSString
Splunk Filed extraction field interception
【请教】SQL语句按列1去重来计算列2之和
Mysql报错2003 解决办法 Can‘t connect to MySQL server on ‘localhost‘ (10061)
JS初识高阶函数和函数柯里化
张驰课堂:六西格玛测量系统的误差分析与判定
吃透Chisel语言.30.Chisel进阶之通信状态机(二)——FSMD:以Popcount为例
Go implements distributed locks
敏捷、DevOps和嵌入式系统测试
php删除一维数组中一个值
【网络】IP、子网掩码
(Part of it is not understood, and the notes are not completed) [Graph Theory] Difference Constraints
概率论与数理统计
LeetCode 2360. 图中的最长环
责任链模式(Chain Of Responsibility)
MySQL批量更新
OC-Category
Agile, DevOps and Embedded Systems Testing
Enterprise training and reproduction guidebook - training and reasoning of the OpenPose model based on Huawei ModelArts platform, realizing the recognition of two behaviors of climbing and climbing ov
【图像去噪】基于matlab双立方插值和稀疏表示图像去噪【含Matlab源码 2009期】







![WebGPU 导入[2] - 核心概念与重要机制解读](/img/8f/195a3b04912d8872d025df58ab5960.png)
