当前位置:网站首页>2022 Nioke Multi-School Training Session 2 J Question Link with Arithmetic Progression

2022 Nioke Multi-School Training Session 2 J Question Link with Arithmetic Progression

2022-08-05 00:21:00 Rain Sure

题目链接

Link with Arithmetic Progression

题目大意

给定一个数组,Let's find a straight line that fits it,Minimum mean squared error is required.I believe that everyone has learned related knowledge in mathematics class or machine learning class.

题解

T a r g e t = m i n ( ∑ i = 1 n [ a 1 + ( i − 1 ) × d − a i ] 2 ) Target = min(\sum^{n}_{i = 1} [a_1 + (i - 1) \times d - a_i]^2) Target=min(i=1n[a1+(i1)×dai]2)
This is the value we are asking for,We need to keep it minimal,We can think about it first a 1 a_1 a1求出来,很明显,随着 a 1 a_1 a1from negative infinity to positive infinity,TargetThe value first falls and then rises,也就是说 a 1 a_1 a1是一个凹函数,Therefore, we can consider using three points a 1 a_1 a1,and then considering a 1 a_1 a1确定的情况下,如何确定 d d d.
We deform the formula:
= [ a 1 + ( i − 1 ) × d ] 2 − 2 × [ a 1 + ( i − 1 ) × d ] × a i + a i 2 = [a_1 + (i - 1)\times d]^2 - 2 \times [a_1 + (i - 1) \times d] \times a_i + {a_i}^2 =[a1+(i1)×d]22×[a1+(i1)×d]×ai+ai2
然后,将带有 d d d的合并同类项.
= ( i − 1 ) 2 × d 2 + 2 × ( i − 1 ) × ( a 1 − a i ) × d + a 1 2 + a i 2 = (i - 1) ^2 \times d^2 + 2 \times (i - 1) \times (a_1 - a_i) \times d + {a_1}^2 + {a_i}^2 =(i1)2×d2+2×(i1)×(a1ai)×d+a12+ai2
According to the knowledge of quadratic functions,我们可以很轻松的确定 d = − b 2 ∗ ( i − 1 ) 2 d = \frac {-b} {2 * (i - 1) ^ 2} d=2(i1)2b
然后,就可以进行计算了.
话不多说,上代码:

代码

#include<iostream>
#include<cstring>
#include <cstdio>
#include <cctype>
using namespace std;
#define int long long
#define double long double
const int maxn = 100010;
int w[maxn];
int n;

namespace GTI
{
    
    char gc(void)
       {
    
        const int S = 1 << 16;
        static char buf[S], *s = buf, *t = buf;
        if (s == t) t = buf + fread(s = buf, 1, S, stdin);
        if (s == t) return EOF;
        return *s++;
    }
    int gti(void)
       {
    
        int a = 0, b = 1, c = gc();
        for (; !isdigit(c); c = gc()) b ^= (c == '-');
        for (; isdigit(c); c = gc()) a = a * 10 + c - '0';
        return b ? a : -a;
    }
}
using GTI::gti;
double check(double a1)
{
    
	double a = 0, b = 0;
	for(int i = 1; i <= n; i ++){
    
		a += (i - 1) * (i - 1);
		b += 2 * (i - 1) * (a1 - w[i]);
	}
	double d = - b / (2 * a);
	double res = 0;
	for(int i = 1; i <= n; i ++){
    
		res += (a1 + (i - 1) * d - w[i]) * (a1 + (i - 1) * d - w[i]);
	}
	return res;
}
signed main()
{
    
	int t; t = gti();
	while(t --)
	{
    
		n = gti();
		for(int i = 1; i <= n; i ++) w[i] = gti();
		double l = -1e10, r = 1e10;
		while(r - l > 1e-5) {
    
			double len = r - l;
			double mid_l = l + len / 3, mid_r = r - len / 3;
			if(check(mid_l) >= check(mid_r)) l = mid_l;
			else r = mid_r;
		}
		printf("%.10Lf\n", check(r));
	}
	return 0;
}
原网站

版权声明
本文为[Rain Sure]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/217/202208050018156399.html