当前位置:网站首页>2022 Nioke Multi-School Training Session 2 J Question Link with Arithmetic Progression
2022 Nioke Multi-School Training Session 2 J Question Link with Arithmetic Progression
2022-08-05 00:21:00 【Rain Sure】
题目链接
Link with Arithmetic Progression
题目大意
给定一个数组,Let's find a straight line that fits it,Minimum mean squared error is required.I believe that everyone has learned related knowledge in mathematics class or machine learning class.
题解
T a r g e t = m i n ( ∑ i = 1 n [ a 1 + ( i − 1 ) × d − a i ] 2 ) Target = min(\sum^{n}_{i = 1} [a_1 + (i - 1) \times d - a_i]^2) Target=min(i=1∑n[a1+(i−1)×d−ai]2)
This is the value we are asking for,We need to keep it minimal,We can think about it first a 1 a_1 a1求出来,很明显,随着 a 1 a_1 a1from negative infinity to positive infinity,TargetThe value first falls and then rises,也就是说 a 1 a_1 a1是一个凹函数,Therefore, we can consider using three points a 1 a_1 a1,and then considering a 1 a_1 a1确定的情况下,如何确定 d d d.
We deform the formula:
= [ a 1 + ( i − 1 ) × d ] 2 − 2 × [ a 1 + ( i − 1 ) × d ] × a i + a i 2 = [a_1 + (i - 1)\times d]^2 - 2 \times [a_1 + (i - 1) \times d] \times a_i + {a_i}^2 =[a1+(i−1)×d]2−2×[a1+(i−1)×d]×ai+ai2
然后,将带有 d d d的合并同类项.
= ( i − 1 ) 2 × d 2 + 2 × ( i − 1 ) × ( a 1 − a i ) × d + a 1 2 + a i 2 = (i - 1) ^2 \times d^2 + 2 \times (i - 1) \times (a_1 - a_i) \times d + {a_1}^2 + {a_i}^2 =(i−1)2×d2+2×(i−1)×(a1−ai)×d+a12+ai2
According to the knowledge of quadratic functions,我们可以很轻松的确定 d = − b 2 ∗ ( i − 1 ) 2 d = \frac {-b} {2 * (i - 1) ^ 2} d=2∗(i−1)2−b
然后,就可以进行计算了.
话不多说,上代码:
代码
#include<iostream>
#include<cstring>
#include <cstdio>
#include <cctype>
using namespace std;
#define int long long
#define double long double
const int maxn = 100010;
int w[maxn];
int n;
namespace GTI
{
char gc(void)
{
const int S = 1 << 16;
static char buf[S], *s = buf, *t = buf;
if (s == t) t = buf + fread(s = buf, 1, S, stdin);
if (s == t) return EOF;
return *s++;
}
int gti(void)
{
int a = 0, b = 1, c = gc();
for (; !isdigit(c); c = gc()) b ^= (c == '-');
for (; isdigit(c); c = gc()) a = a * 10 + c - '0';
return b ? a : -a;
}
}
using GTI::gti;
double check(double a1)
{
double a = 0, b = 0;
for(int i = 1; i <= n; i ++){
a += (i - 1) * (i - 1);
b += 2 * (i - 1) * (a1 - w[i]);
}
double d = - b / (2 * a);
double res = 0;
for(int i = 1; i <= n; i ++){
res += (a1 + (i - 1) * d - w[i]) * (a1 + (i - 1) * d - w[i]);
}
return res;
}
signed main()
{
int t; t = gti();
while(t --)
{
n = gti();
for(int i = 1; i <= n; i ++) w[i] = gti();
double l = -1e10, r = 1e10;
while(r - l > 1e-5) {
double len = r - l;
double mid_l = l + len / 3, mid_r = r - len / 3;
if(check(mid_l) >= check(mid_r)) l = mid_l;
else r = mid_r;
}
printf("%.10Lf\n", check(r));
}
return 0;
}
边栏推荐
猜你喜欢
The master teaches you the 3D real-time character production process, the game modeling process sharing
测试经理要不要做测试执行?
Will domestic websites use Hong Kong servers be blocked?
redis可视化管理软件Redis Desktop Manager2022
SV 类的虚方法 多态
【Valentine's Day special effects】--Canvas realizes full screen love
电子行业MES管理系统的主要功能与用途
oracle创建表空间
怎样进行在不改变主线程执行的时候,进行日志的记录
10 个关于 Promise 和 setTimeout 知识的面试题,通过图解一次说透彻
随机推荐
canvas 高斯模糊效果
测试经理要不要做测试执行?
【云原生--Kubernetes】Pod控制器
软件测试面试题:软件测试类型都有哪些?
软件测试面试题:软件都有多少种分类?
leetcode:266. 回文全排列
RK3399平台开发系列讲解(内核调试篇)2.50、嵌入式产品启动速度优化
关于我仔细检查审核过关于工作人员页面,返回一个所属行业问题
leetcode: 269. The Martian Dictionary
MongoDB permission verification is turned on and mongoose database configuration
E - Distance Sequence (前缀和优化dp
2022 Niu Ke Summer Multi-School Training Camp 5 (BCDFGHK)
Senior game modelers tell newbies, what are the necessary software for game scene modelers?
【论文笔记】—低照度图像增强—Unsupervised—EnlightenGAN—2019-TIP
"Relish Podcast" #397 The factory manager is here: How to use technology to empower the law?
IDEA file encoding modification
E - Many Operations (bitwise consideration + dp thought to record the result after the operation
SQL association table update
2 用D435i运行VINS-fusion
[idea] idea configures sql formatting