当前位置:网站首页>各省GDP可视化案列,附带csv Metabase处理
各省GDP可视化案列,附带csv Metabase处理
2022-06-30 15:33:00 【南师大蒜阿熏呀】
GDP.csv
province,2016y,2015y,2014y,2013y,2012y,2011y,2010y,2009y,2008y,2007y,2006y,2005y,2004y,2003y,2002y,2001y,2000y,1999y,1998y,1997y
北京市,25669.13,23014.59,21330.83,19800.81,17879.4,16251.93,14113.58,12153.03,11115,9846.81,8117.78,6969.52,6033.21,5007.21,4315,3707.96,3161.66,2678.82,2377.18,2077.09
天津市,17885.39,16538.19,15726.93,14442.01,12893.88,11307.28,9224.46,7521.85,6719.01,5252.76,4462.74,3905.64,3110.97,2578.03,2150.76,1919.09,1701.88,1500.95,1374.6,1264.63
河北省,32070.45,29806.11,29421.15,28442.95,26575.01,24515.76,20394.26,17235.48,16011.97,13607.32,11467.6,10012.11,8477.63,6921.29,6018.28,5516.76,5043.96,4514.19,4256.01,3953.78
山西省,13050.41,12766.49,12761.49,12665.25,12112.83,11237.55,9200.86,7358.31,7315.4,6024.45,4878.61,4230.53,3571.37,2855.23,2324.8,2029.53,1845.72,1667.1,1611.08,1476
内蒙古,18128.1,17831.51,17770.19,16916.5,15880.58,14359.88,11672,9740.25,8496.2,6423.18,4944.25,3905.03,3041.07,2388.38,1940.94,1713.81,1539.12,1379.31,1262.54,1153.51
辽宁省,22246.9,28669.02,28626.58,27213.22,24846.43,22226.7,18457.27,15212.49,13668.58,11164.3,9304.52,8047.26,6672,6002.54,5458.22,5033.08,4669.06,4171.69,3881.73,3582.46
吉林省,14776.8,14063.13,13803.14,13046.4,11939.24,10568.83,8667.58,7278.75,6426.1,5284.69,4275.12,3620.27,3122.01,2662.08,2348.54,2120.35,1951.51,1672.96,1577.05,1464.34
黑龙江省,15386.09,15083.67,15039.38,14454.91,13691.58,12582,10368.6,8587,8314.37,7104,6211.8,5513.7,4750.6,4057.4,3637.2,3390.1,3151.4,2866.3,2774.4,2667.5
上海市,28178.65,25123.45,23567.7,21818.15,20181.72,19195.69,17165.98,15046.45,14069.86,12494.01,10572.24,9247.66,8072.83,6694.23,5741.03,5210.12,4771.17,4188.73,3801.09,3438.79
江苏省,77388.28,70116.38,65088.32,59753.37,54058.22,49110.27,41425.48,34457.3,30981.98,26018.48,21742.05,18598.69,15003.6,12442.87,10606.85,9456.84,8553.69,7697.82,7199.95,6680.34
浙江省,47251.36,42886.49,40173.03,37756.59,34665.33,32318.85,27722.31,22990.35,21462.69,18753.73,15718.47,13417.68,11648.7,9705.02,8003.67,6898.34,6141.03,5443.92,5052.62,4686.11
安徽省,24407.62,22005.63,20848.75,19229.34,17212.05,15300.65,12359.33,10062.82,8851.66,7360.92,6112.5,5350.17,4759.3,3923.11,3519.72,3246.71,2902.09,2712.34,2542.96,2347.32
福建省,28810.58,25979.82,24055.76,21868.49,19701.78,17560.18,14737.12,12236.53,10823.01,9248.53,7583.85,6554.69,5763.35,4983.67,4467.55,4072.85,3764.54,3414.19,3159.91,2870.9
江西省,18499,16723.78,15714.63,14410.19,12948.88,11702.82,9451.26,7655.18,6971.05,5800.25,4820.53,4056.76,3456.7,2807.41,2450.48,2175.68,2003.07,1853.65,1719.87,1605.77
山东省,68024.49,63002.33,59426.59,55230.32,50013.24,45361.85,39169.92,33896.65,30933.28,25776.91,21900.19,18366.87,15021.84,12078.15,10275.5,9195.04,8337.47,7493.84,7021.35,6537.07
河南省,40471.79,37002.16,34938.24,32191.3,29599.31,26931.03,23092.36,19480.46,18018.53,15012.46,12362.79,10587.42,8553.79,6867.7,6035.48,5533.01,5052.99,4517.94,4308.24,4041.09
湖北省,32665.38,29550.19,27379.22,24791.83,22250.45,19632.26,15967.61,12961.1,11328.92,9333.4,7617.47,6590.19,5633.24,4757.45,4212.82,3880.53,3545.39,3229.29,3114.02,2856.47
湖南省,31551.37,28902.21,27037.32,24621.67,22154.23,19669.56,16037.96,13059.69,11555,9439.6,7688.67,6596.1,5641.94,4659.99,4151.54,3831.9,3551.49,3214.54,3025.53,2849.27
广东省,80854.91,72812.55,67809.85,62474.79,57067.92,53210.28,46013.06,39482.56,36796.71,31777.01,26587.76,22557.37,18864.62,15844.64,13502.42,12039.25,10741.25,9250.68,8530.88,7774.53
广西,18317.64,16803.12,15672.89,14449.9,13035.1,11720.87,9569.85,7759.16,7021,5823.41,4746.16,3984.1,3433.5,2821.11,2523.73,2279.34,2080.04,1971.41,1911.3,1817.25
海南省,4053.2,3702.76,3500.72,3177.56,2855.54,2522.66,2064.5,1654.21,1503.06,1254.17,1065.67,918.75,819.66,713.96,642.73,579.17,526.82,476.67,442.13,411.16
重庆市,17740.59,15717.27,14262.6,12783.26,11409.6,10011.37,7925.58,6530.01,5793.66,4676.13,3907.23,3467.72,3034.58,2555.72,2232.86,1976.86,1791,1663.2,1602.38,1509.75
四川省,32934.54,30053.1,28536.66,26392.07,23872.8,21026.68,17185.48,14151.28,12601.23,10562.39,8690.24,7385.1,6379.63,5333.09,4725.01,4293.49,3928.2,3649.12,3474.09,3241.47
贵州省,11776.73,10502.56,9266.39,8086.86,6852.2,5701.84,4602.16,3912.68,3561.56,2884.11,2338.98,2005.42,1677.8,1426.34,1243.43,1133.27,1029.92,937.5,858.39,805.79
云南省,14788.42,13619.17,12814.59,11832.31,10309.47,8893.12,7224.18,6169.75,5692.12,4772.52,3988.14,3462.73,3081.91,2556.02,2312.82,2138.31,2011.19,1899.82,1831.33,1676.17
西藏,1151.41,1026.39,920.83,815.67,701.03,605.83,507.46,441.36,394.85,341.43,290.76,248.8,220.34,185.09,162.04,139.16,117.8,105.98,91.5,77.24
陕西省,19399.59,18021.86,17689.94,16205.45,14453.68,12512.3,10123.48,8169.8,7314.58,5757.29,4743.61,3933.72,3175.58,2587.72,2253.39,2010.62,1804,1592.64,1458.4,1363.6
甘肃省,7200.37,6790.32,6836.82,6330.69,5650.2,5020.37,4120.75,3387.56,3166.82,2703.98,2277.35,1933.98,1688.49,1399.83,1232.03,1125.37,1052.88,956.32,887.67,793.57
青海省,2572.49,2417.05,2303.32,2122.06,1893.54,1670.44,1350.43,1081.27,1018.62,797.35,648.5,543.32,466.1,390.2,340.65,300.13,263.68,239.38,220.92,202.79
宁夏,3168.59,2911.77,2752.1,2577.57,2341.29,2102.21,1689.65,1353.31,1203.92,919.11,725.9,612.61,537.11,445.36,377.16,337.44,295.02,264.58,245.44,224.59
新疆,9649.7,9324.8,9273.46,8443.84,7505.31,6610.05,5437.47,4277.05,4183.21,3523.16,3045.26,2604.19,2209.09,1886.35,1612.65,1491.6,1363.56,1163.17,1106.95,1039.85
线图 Y轴log效果,设置每个省使用的点用不同形状,数据紧贴Y轴。横向zoom缩放条在下方,滑块靠左。
""" 线图 + zoom滑块在左侧, logY效果 线图 Y轴log效果,设置每个省使用的点用不同形状,数据紧贴Y轴。横向zoom缩放条在下方,滑块靠左。 """
import pandas as pd
import numpy as np
from pyecharts.charts import Line
from pyecharts import options as opts
df = pd.read_csv('gdp.csv')
d = df.iloc[[0,14,18,15,19,27],0:].set_index("province")
d = d.T.sort_index()
x = d.index.tolist() #X轴
y = np.array(d.T) #Y轴
City = d.columns.values.tolist() #城市
symbol=['circle','rect','roundRect','triangle','diamond', 'pin', 'arrow']
#线图 左滑块orient='vertical'
def show_line():
line = Line().add_xaxis(x)
for i in range(len(City)):
line.add_yaxis(City[i],list(y[i]),is_smooth=True,symbol=symbol[i],symbol_size=10)
line.set_global_opts(title_opts=opts.TitleOpts(title="线性滑块"),
xaxis_opts=opts.AxisOpts(
axistick_opts=opts.AxisTickOpts(is_align_with_label=True),
is_scale=False,
boundary_gap=False,
),
datazoom_opts=opts.DataZoomOpts(pos_left = True,range_start=0),
yaxis_opts=opts.AxisOpts(type_="log",is_scale=True))
return line
show_line().render_notebook()
(1)Timeline轮播: 横向柱状图, 按GDP排序,值大的在上,轮播年份
#GDP数据取 北京、山东、广东、河南、广西、甘肃 六个省,所有年份
#(1)Timeline轮播: 横向柱状图, 按GDP排序,值大的在上,轮播年份
import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import *
#获取数据
data = pd.read_csv(r'gdp.csv')
#print(data)
data=data.set_index('province')
#print(data)
lieming=data.columns.tolist()
#print(lieming)
def timeline_bar1() -> Timeline:
city=['北京市','山东省','广东省','河南省','广西','甘肃省']
t1 = Timeline()
for i in lieming:
city =data.loc[['北京市','山东省','广东省','河南省','广西','甘肃省'],:].sort_values(i).index.values.tolist()
year1=data.loc[['北京市','山东省','广东省','河南省','广西','甘肃省'],:].sort_values(i)[i].values.tolist()
bar = (
Bar()
.add_xaxis(city)#每次添加一样的X轴
.add_yaxis("GDP",year1)
.set_global_opts(title_opts=opts.TitleOpts("GDP{}".format(i)))
.reversal_axis()
)
t1.add(bar, "{}".format(i))
return t1
timeline_bar1().render_notebook()
启动metabase
java -jar metabase.jar
导入好的数据库
select tt.name,count(category_id) as '总数'
from
(
select category.name,film_category.film_id,film_category.category_id
from film_category
left join category ON film_category.`category_id` = category.`category_id`
) as tt
group by category_id;
边栏推荐
- 1107 social clusters (30 points)
- Machine learning feature selection
- Why do high precision CNC machining centers have errors? You should pay attention to these four reasons!
- Help you accumulate audio and video knowledge, Agora developer's roaming guide officially set sail
- The principle of fluent 2 rendering and how to realize video rendering
- Pycharm----xx. So cannot open shared object file problem solving
- 4.6 floating point number
- What would you choose between architecture optimization and business iteration?
- My own opinion on lisp
- [matlab] 3D drawing summary
猜你喜欢
Help you accumulate audio and video knowledge, Agora developer's roaming guide officially set sail
(Niuke) BFS
C language foundation - pointer array - initialization method & constant pointer array, pointer constant array
Chapter 2 installation and use of vscode editor
Kubernetes: a comprehensive analysis of container choreography
How to get palindrome number in MATLAB (using fliplr function)
Single cycle CPU of the design group of West University of Technology
Industry analysis | the future of real-time audio and video
[ten thousand words long article] thoroughly understand load balancing
Explain service idempotency design in detail
随机推荐
Bye civil engineering, hello CS, can you change the certificate to the Blue Bridge Cup
Industry analysis | the future of real-time audio and video
分布式--OpenResty+lua+Redis
[ten thousand words long article] thoroughly understand load balancing
Rte2021 review of the practice and the way of AI OPS landing
RTC monthly tabloid programming challenge ended successfully in June; Review of the first anniversary of sound network's listing
One dimensional and two dimensional array addresses
高清机械原理 · 机械设计经典动图
K - rochambau (joint search, enumeration)
How to do a good job in high concurrency system design? I have summarized three points
How does sd-rtn ensure the high availability of RTE services after infrastructure failure
1132: stone scissors cloth
Matlab function for limit, definite integral, first-order derivative, second-order derivative (classic examples)
Matlab construction operation example
How should we understand the variability of architecture design?
catkin_ Make reports an error, transfers the location of the workspace, and uses other people's workspace files to cause compilation errors
国债逆回购在哪个平台上买比较安全?
A. Theatre Square(codefore)
4.6 floating point number
Is pioneer futures safe? What are the procedures for opening futures accounts? How to reduce the futures commission?