当前位置:网站首页>各省GDP可视化案列,附带csv Metabase处理
各省GDP可视化案列,附带csv Metabase处理
2022-06-30 15:33:00 【南师大蒜阿熏呀】
GDP.csv
province,2016y,2015y,2014y,2013y,2012y,2011y,2010y,2009y,2008y,2007y,2006y,2005y,2004y,2003y,2002y,2001y,2000y,1999y,1998y,1997y
北京市,25669.13,23014.59,21330.83,19800.81,17879.4,16251.93,14113.58,12153.03,11115,9846.81,8117.78,6969.52,6033.21,5007.21,4315,3707.96,3161.66,2678.82,2377.18,2077.09
天津市,17885.39,16538.19,15726.93,14442.01,12893.88,11307.28,9224.46,7521.85,6719.01,5252.76,4462.74,3905.64,3110.97,2578.03,2150.76,1919.09,1701.88,1500.95,1374.6,1264.63
河北省,32070.45,29806.11,29421.15,28442.95,26575.01,24515.76,20394.26,17235.48,16011.97,13607.32,11467.6,10012.11,8477.63,6921.29,6018.28,5516.76,5043.96,4514.19,4256.01,3953.78
山西省,13050.41,12766.49,12761.49,12665.25,12112.83,11237.55,9200.86,7358.31,7315.4,6024.45,4878.61,4230.53,3571.37,2855.23,2324.8,2029.53,1845.72,1667.1,1611.08,1476
内蒙古,18128.1,17831.51,17770.19,16916.5,15880.58,14359.88,11672,9740.25,8496.2,6423.18,4944.25,3905.03,3041.07,2388.38,1940.94,1713.81,1539.12,1379.31,1262.54,1153.51
辽宁省,22246.9,28669.02,28626.58,27213.22,24846.43,22226.7,18457.27,15212.49,13668.58,11164.3,9304.52,8047.26,6672,6002.54,5458.22,5033.08,4669.06,4171.69,3881.73,3582.46
吉林省,14776.8,14063.13,13803.14,13046.4,11939.24,10568.83,8667.58,7278.75,6426.1,5284.69,4275.12,3620.27,3122.01,2662.08,2348.54,2120.35,1951.51,1672.96,1577.05,1464.34
黑龙江省,15386.09,15083.67,15039.38,14454.91,13691.58,12582,10368.6,8587,8314.37,7104,6211.8,5513.7,4750.6,4057.4,3637.2,3390.1,3151.4,2866.3,2774.4,2667.5
上海市,28178.65,25123.45,23567.7,21818.15,20181.72,19195.69,17165.98,15046.45,14069.86,12494.01,10572.24,9247.66,8072.83,6694.23,5741.03,5210.12,4771.17,4188.73,3801.09,3438.79
江苏省,77388.28,70116.38,65088.32,59753.37,54058.22,49110.27,41425.48,34457.3,30981.98,26018.48,21742.05,18598.69,15003.6,12442.87,10606.85,9456.84,8553.69,7697.82,7199.95,6680.34
浙江省,47251.36,42886.49,40173.03,37756.59,34665.33,32318.85,27722.31,22990.35,21462.69,18753.73,15718.47,13417.68,11648.7,9705.02,8003.67,6898.34,6141.03,5443.92,5052.62,4686.11
安徽省,24407.62,22005.63,20848.75,19229.34,17212.05,15300.65,12359.33,10062.82,8851.66,7360.92,6112.5,5350.17,4759.3,3923.11,3519.72,3246.71,2902.09,2712.34,2542.96,2347.32
福建省,28810.58,25979.82,24055.76,21868.49,19701.78,17560.18,14737.12,12236.53,10823.01,9248.53,7583.85,6554.69,5763.35,4983.67,4467.55,4072.85,3764.54,3414.19,3159.91,2870.9
江西省,18499,16723.78,15714.63,14410.19,12948.88,11702.82,9451.26,7655.18,6971.05,5800.25,4820.53,4056.76,3456.7,2807.41,2450.48,2175.68,2003.07,1853.65,1719.87,1605.77
山东省,68024.49,63002.33,59426.59,55230.32,50013.24,45361.85,39169.92,33896.65,30933.28,25776.91,21900.19,18366.87,15021.84,12078.15,10275.5,9195.04,8337.47,7493.84,7021.35,6537.07
河南省,40471.79,37002.16,34938.24,32191.3,29599.31,26931.03,23092.36,19480.46,18018.53,15012.46,12362.79,10587.42,8553.79,6867.7,6035.48,5533.01,5052.99,4517.94,4308.24,4041.09
湖北省,32665.38,29550.19,27379.22,24791.83,22250.45,19632.26,15967.61,12961.1,11328.92,9333.4,7617.47,6590.19,5633.24,4757.45,4212.82,3880.53,3545.39,3229.29,3114.02,2856.47
湖南省,31551.37,28902.21,27037.32,24621.67,22154.23,19669.56,16037.96,13059.69,11555,9439.6,7688.67,6596.1,5641.94,4659.99,4151.54,3831.9,3551.49,3214.54,3025.53,2849.27
广东省,80854.91,72812.55,67809.85,62474.79,57067.92,53210.28,46013.06,39482.56,36796.71,31777.01,26587.76,22557.37,18864.62,15844.64,13502.42,12039.25,10741.25,9250.68,8530.88,7774.53
广西,18317.64,16803.12,15672.89,14449.9,13035.1,11720.87,9569.85,7759.16,7021,5823.41,4746.16,3984.1,3433.5,2821.11,2523.73,2279.34,2080.04,1971.41,1911.3,1817.25
海南省,4053.2,3702.76,3500.72,3177.56,2855.54,2522.66,2064.5,1654.21,1503.06,1254.17,1065.67,918.75,819.66,713.96,642.73,579.17,526.82,476.67,442.13,411.16
重庆市,17740.59,15717.27,14262.6,12783.26,11409.6,10011.37,7925.58,6530.01,5793.66,4676.13,3907.23,3467.72,3034.58,2555.72,2232.86,1976.86,1791,1663.2,1602.38,1509.75
四川省,32934.54,30053.1,28536.66,26392.07,23872.8,21026.68,17185.48,14151.28,12601.23,10562.39,8690.24,7385.1,6379.63,5333.09,4725.01,4293.49,3928.2,3649.12,3474.09,3241.47
贵州省,11776.73,10502.56,9266.39,8086.86,6852.2,5701.84,4602.16,3912.68,3561.56,2884.11,2338.98,2005.42,1677.8,1426.34,1243.43,1133.27,1029.92,937.5,858.39,805.79
云南省,14788.42,13619.17,12814.59,11832.31,10309.47,8893.12,7224.18,6169.75,5692.12,4772.52,3988.14,3462.73,3081.91,2556.02,2312.82,2138.31,2011.19,1899.82,1831.33,1676.17
西藏,1151.41,1026.39,920.83,815.67,701.03,605.83,507.46,441.36,394.85,341.43,290.76,248.8,220.34,185.09,162.04,139.16,117.8,105.98,91.5,77.24
陕西省,19399.59,18021.86,17689.94,16205.45,14453.68,12512.3,10123.48,8169.8,7314.58,5757.29,4743.61,3933.72,3175.58,2587.72,2253.39,2010.62,1804,1592.64,1458.4,1363.6
甘肃省,7200.37,6790.32,6836.82,6330.69,5650.2,5020.37,4120.75,3387.56,3166.82,2703.98,2277.35,1933.98,1688.49,1399.83,1232.03,1125.37,1052.88,956.32,887.67,793.57
青海省,2572.49,2417.05,2303.32,2122.06,1893.54,1670.44,1350.43,1081.27,1018.62,797.35,648.5,543.32,466.1,390.2,340.65,300.13,263.68,239.38,220.92,202.79
宁夏,3168.59,2911.77,2752.1,2577.57,2341.29,2102.21,1689.65,1353.31,1203.92,919.11,725.9,612.61,537.11,445.36,377.16,337.44,295.02,264.58,245.44,224.59
新疆,9649.7,9324.8,9273.46,8443.84,7505.31,6610.05,5437.47,4277.05,4183.21,3523.16,3045.26,2604.19,2209.09,1886.35,1612.65,1491.6,1363.56,1163.17,1106.95,1039.85
线图 Y轴log效果,设置每个省使用的点用不同形状,数据紧贴Y轴。横向zoom缩放条在下方,滑块靠左。
""" 线图 + zoom滑块在左侧, logY效果 线图 Y轴log效果,设置每个省使用的点用不同形状,数据紧贴Y轴。横向zoom缩放条在下方,滑块靠左。 """
import pandas as pd
import numpy as np
from pyecharts.charts import Line
from pyecharts import options as opts
df = pd.read_csv('gdp.csv')
d = df.iloc[[0,14,18,15,19,27],0:].set_index("province")
d = d.T.sort_index()
x = d.index.tolist() #X轴
y = np.array(d.T) #Y轴
City = d.columns.values.tolist() #城市
symbol=['circle','rect','roundRect','triangle','diamond', 'pin', 'arrow']
#线图 左滑块orient='vertical'
def show_line():
line = Line().add_xaxis(x)
for i in range(len(City)):
line.add_yaxis(City[i],list(y[i]),is_smooth=True,symbol=symbol[i],symbol_size=10)
line.set_global_opts(title_opts=opts.TitleOpts(title="线性滑块"),
xaxis_opts=opts.AxisOpts(
axistick_opts=opts.AxisTickOpts(is_align_with_label=True),
is_scale=False,
boundary_gap=False,
),
datazoom_opts=opts.DataZoomOpts(pos_left = True,range_start=0),
yaxis_opts=opts.AxisOpts(type_="log",is_scale=True))
return line
show_line().render_notebook()
(1)Timeline轮播: 横向柱状图, 按GDP排序,值大的在上,轮播年份
#GDP数据取 北京、山东、广东、河南、广西、甘肃 六个省,所有年份
#(1)Timeline轮播: 横向柱状图, 按GDP排序,值大的在上,轮播年份
import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import *
#获取数据
data = pd.read_csv(r'gdp.csv')
#print(data)
data=data.set_index('province')
#print(data)
lieming=data.columns.tolist()
#print(lieming)
def timeline_bar1() -> Timeline:
city=['北京市','山东省','广东省','河南省','广西','甘肃省']
t1 = Timeline()
for i in lieming:
city =data.loc[['北京市','山东省','广东省','河南省','广西','甘肃省'],:].sort_values(i).index.values.tolist()
year1=data.loc[['北京市','山东省','广东省','河南省','广西','甘肃省'],:].sort_values(i)[i].values.tolist()
bar = (
Bar()
.add_xaxis(city)#每次添加一样的X轴
.add_yaxis("GDP",year1)
.set_global_opts(title_opts=opts.TitleOpts("GDP{}".format(i)))
.reversal_axis()
)
t1.add(bar, "{}".format(i))
return t1
timeline_bar1().render_notebook()
启动metabase
java -jar metabase.jar
导入好的数据库

select tt.name,count(category_id) as '总数'
from
(
select category.name,film_category.film_id,film_category.category_id
from film_category
left join category ON film_category.`category_id` = category.`category_id`
) as tt
group by category_id;

边栏推荐
- RTC monthly tabloid programming challenge ended successfully in June; Review of the first anniversary of sound network's listing
- 1135: paired base chain
- Database connection to company database denied
- Technology sharing | how to quickly realize audio and video online calls
- L - Jungle roads (minimum spanning tree)
- 4.5 integer
- G - building a space station
- Working principle and fault treatment of cutting cylinder in CNC machining center
- 4.12 input() input function and comments
- N - Is There A Second Way Left? (minimum spanning tree, Kruskal)
猜你喜欢

Developer practice - the future of Agora home AI audio and video

Webrtc: industrial application based on Internet of things

Is Domain Driven Design (DDD) reliable?

Voice codec based on machine learning Agora silver: support high quality voice interaction at ultra-low bit rate

Rte2021 review HDR technology product practice and exploration

Web technology sharing | whiteboard toolbar encapsulation of Web

Industry analysis | the future of real-time audio and video

Technology sharing | anyrtc service single port design

The principle of fluent 2 rendering and how to realize video rendering
![[matlab] 2D drawing summary](/img/de/6bb5385f440a2997dbf9cbb9a756eb.jpg)
[matlab] 2D drawing summary
随机推荐
Abstract meaning
J - Borg maze (minimum spanning tree +bfs)
Forward declaration of classes
[matlab] 2D drawing summary
Three types of technical debt that programmers often encounter: code, data, and architecture
Pycharm----xx. So cannot open shared object file problem solving
高清机械原理 · 机械设计经典动图
Notes on zero basic C language learning -- first introduction -- 1 notes that mom can understand
Review 2021, embrace change and live up to Shaohua
How many questions can you answer for the interview of Mechanical Engineer?
One dimensional and two dimensional array addresses
Advanced functions of ES6 operation array map (), filter (), reduce()
K - rochambau (joint search, enumeration)
Technology sharing | anyrtc service single port design
FoxPro and I
Some reference routines for cache update
1015 reversible primes (20 points)
Fundamentals of C language -- similarities and differences between arrays and pointers
Complement (Niuke)
1151 LCA in a binary tree (30 points)