当前位置:网站首页>各省GDP可视化案列,附带csv Metabase处理
各省GDP可视化案列,附带csv Metabase处理
2022-06-30 15:33:00 【南师大蒜阿熏呀】
GDP.csv
province,2016y,2015y,2014y,2013y,2012y,2011y,2010y,2009y,2008y,2007y,2006y,2005y,2004y,2003y,2002y,2001y,2000y,1999y,1998y,1997y
北京市,25669.13,23014.59,21330.83,19800.81,17879.4,16251.93,14113.58,12153.03,11115,9846.81,8117.78,6969.52,6033.21,5007.21,4315,3707.96,3161.66,2678.82,2377.18,2077.09
天津市,17885.39,16538.19,15726.93,14442.01,12893.88,11307.28,9224.46,7521.85,6719.01,5252.76,4462.74,3905.64,3110.97,2578.03,2150.76,1919.09,1701.88,1500.95,1374.6,1264.63
河北省,32070.45,29806.11,29421.15,28442.95,26575.01,24515.76,20394.26,17235.48,16011.97,13607.32,11467.6,10012.11,8477.63,6921.29,6018.28,5516.76,5043.96,4514.19,4256.01,3953.78
山西省,13050.41,12766.49,12761.49,12665.25,12112.83,11237.55,9200.86,7358.31,7315.4,6024.45,4878.61,4230.53,3571.37,2855.23,2324.8,2029.53,1845.72,1667.1,1611.08,1476
内蒙古,18128.1,17831.51,17770.19,16916.5,15880.58,14359.88,11672,9740.25,8496.2,6423.18,4944.25,3905.03,3041.07,2388.38,1940.94,1713.81,1539.12,1379.31,1262.54,1153.51
辽宁省,22246.9,28669.02,28626.58,27213.22,24846.43,22226.7,18457.27,15212.49,13668.58,11164.3,9304.52,8047.26,6672,6002.54,5458.22,5033.08,4669.06,4171.69,3881.73,3582.46
吉林省,14776.8,14063.13,13803.14,13046.4,11939.24,10568.83,8667.58,7278.75,6426.1,5284.69,4275.12,3620.27,3122.01,2662.08,2348.54,2120.35,1951.51,1672.96,1577.05,1464.34
黑龙江省,15386.09,15083.67,15039.38,14454.91,13691.58,12582,10368.6,8587,8314.37,7104,6211.8,5513.7,4750.6,4057.4,3637.2,3390.1,3151.4,2866.3,2774.4,2667.5
上海市,28178.65,25123.45,23567.7,21818.15,20181.72,19195.69,17165.98,15046.45,14069.86,12494.01,10572.24,9247.66,8072.83,6694.23,5741.03,5210.12,4771.17,4188.73,3801.09,3438.79
江苏省,77388.28,70116.38,65088.32,59753.37,54058.22,49110.27,41425.48,34457.3,30981.98,26018.48,21742.05,18598.69,15003.6,12442.87,10606.85,9456.84,8553.69,7697.82,7199.95,6680.34
浙江省,47251.36,42886.49,40173.03,37756.59,34665.33,32318.85,27722.31,22990.35,21462.69,18753.73,15718.47,13417.68,11648.7,9705.02,8003.67,6898.34,6141.03,5443.92,5052.62,4686.11
安徽省,24407.62,22005.63,20848.75,19229.34,17212.05,15300.65,12359.33,10062.82,8851.66,7360.92,6112.5,5350.17,4759.3,3923.11,3519.72,3246.71,2902.09,2712.34,2542.96,2347.32
福建省,28810.58,25979.82,24055.76,21868.49,19701.78,17560.18,14737.12,12236.53,10823.01,9248.53,7583.85,6554.69,5763.35,4983.67,4467.55,4072.85,3764.54,3414.19,3159.91,2870.9
江西省,18499,16723.78,15714.63,14410.19,12948.88,11702.82,9451.26,7655.18,6971.05,5800.25,4820.53,4056.76,3456.7,2807.41,2450.48,2175.68,2003.07,1853.65,1719.87,1605.77
山东省,68024.49,63002.33,59426.59,55230.32,50013.24,45361.85,39169.92,33896.65,30933.28,25776.91,21900.19,18366.87,15021.84,12078.15,10275.5,9195.04,8337.47,7493.84,7021.35,6537.07
河南省,40471.79,37002.16,34938.24,32191.3,29599.31,26931.03,23092.36,19480.46,18018.53,15012.46,12362.79,10587.42,8553.79,6867.7,6035.48,5533.01,5052.99,4517.94,4308.24,4041.09
湖北省,32665.38,29550.19,27379.22,24791.83,22250.45,19632.26,15967.61,12961.1,11328.92,9333.4,7617.47,6590.19,5633.24,4757.45,4212.82,3880.53,3545.39,3229.29,3114.02,2856.47
湖南省,31551.37,28902.21,27037.32,24621.67,22154.23,19669.56,16037.96,13059.69,11555,9439.6,7688.67,6596.1,5641.94,4659.99,4151.54,3831.9,3551.49,3214.54,3025.53,2849.27
广东省,80854.91,72812.55,67809.85,62474.79,57067.92,53210.28,46013.06,39482.56,36796.71,31777.01,26587.76,22557.37,18864.62,15844.64,13502.42,12039.25,10741.25,9250.68,8530.88,7774.53
广西,18317.64,16803.12,15672.89,14449.9,13035.1,11720.87,9569.85,7759.16,7021,5823.41,4746.16,3984.1,3433.5,2821.11,2523.73,2279.34,2080.04,1971.41,1911.3,1817.25
海南省,4053.2,3702.76,3500.72,3177.56,2855.54,2522.66,2064.5,1654.21,1503.06,1254.17,1065.67,918.75,819.66,713.96,642.73,579.17,526.82,476.67,442.13,411.16
重庆市,17740.59,15717.27,14262.6,12783.26,11409.6,10011.37,7925.58,6530.01,5793.66,4676.13,3907.23,3467.72,3034.58,2555.72,2232.86,1976.86,1791,1663.2,1602.38,1509.75
四川省,32934.54,30053.1,28536.66,26392.07,23872.8,21026.68,17185.48,14151.28,12601.23,10562.39,8690.24,7385.1,6379.63,5333.09,4725.01,4293.49,3928.2,3649.12,3474.09,3241.47
贵州省,11776.73,10502.56,9266.39,8086.86,6852.2,5701.84,4602.16,3912.68,3561.56,2884.11,2338.98,2005.42,1677.8,1426.34,1243.43,1133.27,1029.92,937.5,858.39,805.79
云南省,14788.42,13619.17,12814.59,11832.31,10309.47,8893.12,7224.18,6169.75,5692.12,4772.52,3988.14,3462.73,3081.91,2556.02,2312.82,2138.31,2011.19,1899.82,1831.33,1676.17
西藏,1151.41,1026.39,920.83,815.67,701.03,605.83,507.46,441.36,394.85,341.43,290.76,248.8,220.34,185.09,162.04,139.16,117.8,105.98,91.5,77.24
陕西省,19399.59,18021.86,17689.94,16205.45,14453.68,12512.3,10123.48,8169.8,7314.58,5757.29,4743.61,3933.72,3175.58,2587.72,2253.39,2010.62,1804,1592.64,1458.4,1363.6
甘肃省,7200.37,6790.32,6836.82,6330.69,5650.2,5020.37,4120.75,3387.56,3166.82,2703.98,2277.35,1933.98,1688.49,1399.83,1232.03,1125.37,1052.88,956.32,887.67,793.57
青海省,2572.49,2417.05,2303.32,2122.06,1893.54,1670.44,1350.43,1081.27,1018.62,797.35,648.5,543.32,466.1,390.2,340.65,300.13,263.68,239.38,220.92,202.79
宁夏,3168.59,2911.77,2752.1,2577.57,2341.29,2102.21,1689.65,1353.31,1203.92,919.11,725.9,612.61,537.11,445.36,377.16,337.44,295.02,264.58,245.44,224.59
新疆,9649.7,9324.8,9273.46,8443.84,7505.31,6610.05,5437.47,4277.05,4183.21,3523.16,3045.26,2604.19,2209.09,1886.35,1612.65,1491.6,1363.56,1163.17,1106.95,1039.85
线图 Y轴log效果,设置每个省使用的点用不同形状,数据紧贴Y轴。横向zoom缩放条在下方,滑块靠左。
""" 线图 + zoom滑块在左侧, logY效果 线图 Y轴log效果,设置每个省使用的点用不同形状,数据紧贴Y轴。横向zoom缩放条在下方,滑块靠左。 """
import pandas as pd
import numpy as np
from pyecharts.charts import Line
from pyecharts import options as opts
df = pd.read_csv('gdp.csv')
d = df.iloc[[0,14,18,15,19,27],0:].set_index("province")
d = d.T.sort_index()
x = d.index.tolist() #X轴
y = np.array(d.T) #Y轴
City = d.columns.values.tolist() #城市
symbol=['circle','rect','roundRect','triangle','diamond', 'pin', 'arrow']
#线图 左滑块orient='vertical'
def show_line():
line = Line().add_xaxis(x)
for i in range(len(City)):
line.add_yaxis(City[i],list(y[i]),is_smooth=True,symbol=symbol[i],symbol_size=10)
line.set_global_opts(title_opts=opts.TitleOpts(title="线性滑块"),
xaxis_opts=opts.AxisOpts(
axistick_opts=opts.AxisTickOpts(is_align_with_label=True),
is_scale=False,
boundary_gap=False,
),
datazoom_opts=opts.DataZoomOpts(pos_left = True,range_start=0),
yaxis_opts=opts.AxisOpts(type_="log",is_scale=True))
return line
show_line().render_notebook()
(1)Timeline轮播: 横向柱状图, 按GDP排序,值大的在上,轮播年份
#GDP数据取 北京、山东、广东、河南、广西、甘肃 六个省,所有年份
#(1)Timeline轮播: 横向柱状图, 按GDP排序,值大的在上,轮播年份
import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import *
#获取数据
data = pd.read_csv(r'gdp.csv')
#print(data)
data=data.set_index('province')
#print(data)
lieming=data.columns.tolist()
#print(lieming)
def timeline_bar1() -> Timeline:
city=['北京市','山东省','广东省','河南省','广西','甘肃省']
t1 = Timeline()
for i in lieming:
city =data.loc[['北京市','山东省','广东省','河南省','广西','甘肃省'],:].sort_values(i).index.values.tolist()
year1=data.loc[['北京市','山东省','广东省','河南省','广西','甘肃省'],:].sort_values(i)[i].values.tolist()
bar = (
Bar()
.add_xaxis(city)#每次添加一样的X轴
.add_yaxis("GDP",year1)
.set_global_opts(title_opts=opts.TitleOpts("GDP{}".format(i)))
.reversal_axis()
)
t1.add(bar, "{}".format(i))
return t1
timeline_bar1().render_notebook()
启动metabase
java -jar metabase.jar
导入好的数据库

select tt.name,count(category_id) as '总数'
from
(
select category.name,film_category.film_id,film_category.category_id
from film_category
left join category ON film_category.`category_id` = category.`category_id`
) as tt
group by category_id;

边栏推荐
- [untitled]
- Technology sharing | how to quickly realize audio and video online calls
- How many questions can you answer for the interview of Mechanical Engineer?
- 1018 public bike Management (30 points)
- Database connection to company database denied
- Matlab calculates the factorial sum of the first n numbers (easy to understand)
- 1136: password translation
- Guada digital analog
- return statement
- 立式加工中心的数控加工对刀具使用基本要求
猜你喜欢

Industry analysis | the future of real-time audio and video
![[matlab] 3D drawing summary](/img/57/05156340ccdd79b866c4df955b3713.jpg)
[matlab] 3D drawing summary

Chapter 2 installation and use of vscode editor

Talk about why I started technical writing

How should we understand the variability of architecture design?

4.3 variables and assignments

At the beginning of the 2022 new year, I will send you hundreds of dry articles

FoxPro and I

Start your global dynamic acceleration journey of Web services in three steps

Summary of system stability construction practice
随机推荐
Infrastructure is code. What are you talking about?
HD mechanical principle · classic dynamic drawing of mechanical design
Kubernetes: a comprehensive analysis of container choreography
高清机械原理 · 机械设计经典动图
Start your global dynamic acceleration journey of Web services in three steps
Super comprehensive redis distributed high availability solution: sentry mechanism
E - highways (minimum spanning tree)
The principle of fluent 2 rendering and how to realize video rendering
1066 root of AVL tree (25 points)
1107 social clusters (30 points)
Basic requirements for tool use in NC machining of vertical machining center
1132: stone scissors cloth
Fundamentals of C language -- similarities and differences between arrays and pointers
Is pioneer futures safe? What are the procedures for opening futures accounts? How to reduce the futures commission?
It's so brain - burning that no wonder programmers lose their hair
Is Domain Driven Design (DDD) reliable?
NPM install --global --save --save dev differences
G - building a space station
1131: genetic correlation
Teach you a learning method to quickly master knowledge