当前位置:网站首页>Follow teacher Li to learn line generation determinant (continuous update)
Follow teacher Li to learn line generation determinant (continuous update)
2022-07-29 10:09:00 【Super seed code】
List of articles
Concept
- determinant : Determinant is the algebraic sum of the products of different row and column elements ( common n ! n! n! term ).
- array : from 1 , 2 , … , n 1,2,\ldots,n 1,2,…,n An ordered array of components is called a n n n Rank arrangement , Usually use j 1 , j 2 … j n j_1,j_2\ldots j_n j1,j2…jn Express n n n Rank arrangement .
- Reverse order number : In the arrangement , If a large number is in front of a small number , Say that these two numbers form a reverse order . The total number of a permutation in reverse order is called the reverse number of this permutation , use C ( j 1 j 2 … j n ) C(j_1j_2\ldots j_n) C(j1j2…jn) Indicates arrangement j 1 j 2 … j n j_1j_2\ldots j_n j1j2…jn In reverse order . If the reverse order number of an arrangement is even , Then this arrangement is called an even arrangement, otherwise it is called an odd arrangement .
- 2 Step determinant : ∣ a b c d ∣ = a d − b c \begin{vmatrix}a&b\\c&d\end{vmatrix}=ad-bc ∣∣acbd∣∣=ad−bc
- 3 Step determinant : ∣ a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 ∣ = a 1 b 2 c 3 + a 2 b 3 c 1 + a 3 b 1 c 2 − a 3 b 2 c 1 − a 2 b 1 c 3 − a 1 b 3 c 2 \begin{vmatrix}a_1&a_2&a_3\\b_1&b_2&b_3\\c_1&c_2&c_3\end{vmatrix}=a_1b_2c_3+a_2b_3c_1+a_3b_1c_2-a_3b_2c_1-a_2b_1c_3-a_1b_3c_2 ∣∣a1b1c1a2b2c2a3b3c3∣∣=a1b2c3+a2b3c1+a3b1c2−a3b2c1−a2b1c3−a1b3c2
- n n n Step determinant : ∣ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 … a n n ∣ = ∑ j 1 j 2 … j n ( − 1 ) C ( j 1 j 2 … j n ) a 1 j 1 a 2 j 2 … a n j n \begin{vmatrix}a_{11} &a_{12}&\ldots&a_{1n}\\a_{21} &a_{22}&\ldots&a_{2n}\\\vdots&\vdots&&\vdots&\\a_{n1}&a_{n2}&\ldots&a_{nn}\end{vmatrix}=\sum_{j_1j_2\ldots j_n}(-1)^{C(j_1j_2\ldots j_n)}a_{1j_1}a_{2j_2}\dots a_{nj_n} ∣∣a11a21⋮an1a12a22⋮an2………a1na2n⋮ann∣∣=j1j2…jn∑(−1)C(j1j2…jn)a1j1a2j2…anjn Different rows and columns n n n Algebraic sum of the product of elements , When j 1 j 2 … j n j_1j_2\dots j_n j1j2…jn It is even arrangement , This item is preceded by a positive sign ; When j 1 j 2 … j n j_1j_2\dots j_n j1j2…jn When it is an odd arrangement , This item is preceded by a minus sign .
- The remainder formula : The second part of the determinant i i i Xing He j j j Column out , Then the remaining determinant is a i j a_{ij} aij The Yu Zi form of , Write it down as M i j M_{ij} Mij, remember A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(−1)i+jMij by a i j a_{ij} aij The algebraic covalent of .
nature
- The value of the transposed determinant remains unchanged , namely ∣ A T ∣ = ∣ A ∣ |A^T|=|A| ∣AT∣=∣A∣
- A line has a common factor k k k, The common factor k k k When it comes to determinants , Special , All elements in a row are zero , Then the value of determinant is 0 0 0.
- Two lines exchange determinant sign , Special , Two lines are equal , The determinant value is 0 0 0; The two lines are proportional , The determinant value is 0 0 0.
- All elements in a row are the sum of two numbers , Then it can be written as the sum of two determinants . ∣ a 1 + b 1 a 2 + b 2 a 3 + b 3 c 1 c 2 c 3 d 1 d 2 d 3 ∣ = ∣ a 1 a 2 a 3 c 1 c 2 c 3 d 1 d 2 d 3 ∣ = ∣ b 1 b 2 b 3 c 1 c 2 c 3 d 1 d 2 d 3 ∣ \begin{vmatrix}a_1+b_1&a_2+b_2&a_3+b_3\\c_1&c_2&c_3\\d_1&d_2&d_3\end{vmatrix}=\begin{vmatrix}a_1&a_2&a_3\\c_1&c_2&c_3\\d_1&d_2&d_3\end{vmatrix}=\begin{vmatrix}b_1&b_2&b_3\\c_1&c_2&c_3\\d_1&d_2&d_3\end{vmatrix} ∣∣a1+b1c1d1a2+b2c2d2a3+b3c3d3∣∣=∣∣a1c1d1a2c2d2a3c3d3∣∣=∣∣b1c1d1b2c2d2b3c3d3∣∣
- Of a certain line k k k Multiply to another line , The value of the determinant remains unchanged .
- Algebraic cofactor : Press i OK, expand : ∣ A ∣ = a i 1 ∣ A i 1 ∣ + a i 2 ∣ A i 2 ∣ + … + a i n ∣ A i n ∣ Press i OK, expand :|A|=a_{i1}|A_{i1}|+a_{i2}|A_{i2}|+\ldots+a_{in}|A_{in}| Press i OK, expand :∣A∣=ai1∣Ai1∣+ai2∣Ai2∣+…+ain∣Ain∣ Press j Column expansion : ∣ A ∣ = a 1 j ∣ A 1 j ∣ + a 2 j ∣ A 2 j ∣ + … + a n j ∣ A n j ∣ Press j Column expansion :|A|=a_{1j}|A_{1j}|+a_{2j}|A_{2j}|+\ldots+a_{nj}|A_{nj}| Press j Column expansion :∣A∣=a1j∣A1j∣+a2j∣A2j∣+…+anj∣Anj∣
- The sum of the algebraic cofactor products of all elements in one row and the corresponding elements in another row is equal to 0 0 0. a 11 A 21 + a 12 A 22 + a 13 A 23 = 0 a_{11}A_{21}+a_{12}A_{22}+a_{13}A_{23}=0 a11A21+a12A22+a13A23=0
Important formula
- On ( Next ) The value of the trigonometric determinant is equal to the product of the main diagonal elements : ∣ a 11 a 12 … a 1 n 0 a 22 … a 2 n ⋮ ⋮ ⋮ 0 0 … a n n ∣ = ∣ a 11 0 … 0 a 21 a 22 … 0 ⋮ ⋮ ⋮ a n 1 a n 2 … a n n ∣ = a 11 a 22 … a n n \begin{vmatrix}a_{11}&a_{12}&\ldots& a_{1n}\\0&a_{22}&\ldots&a_{2n}\\\vdots&\vdots&&\vdots\\0&0&\ldots&a_{nn}\end{vmatrix}=\begin{vmatrix}a_{11}&0&\ldots& 0\\a_{21}&a_{22}&\ldots&0\\\vdots&\vdots&&\vdots\\a_{n1}&a_{n2}&\ldots&a_{nn}\end{vmatrix}=a_{11}a_{22}\dots a_{nn} ∣∣a110⋮0a12a22⋮0………a1na2n⋮ann∣∣=∣∣a11a21⋮an10a22⋮an2………00⋮ann∣∣=a11a22…ann
- On the sub diagonal determinant : ∣ a 11 a 12 … a 1 n a 21 a 22 … 0 ⋮ ⋮ ⋮ a n 1 0 … 0 ∣ = ∣ 0 … 0 a 1 n 0 … a 2 , n − 1 a 2 n ⋮ ⋮ ⋮ a n 1 … a n , n − 1 a n n ∣ = ( − 1 ) n ( n − 1 ) 2 a 1 n a 2 , n − 1 … a n 1 \begin{vmatrix}a_{11}&a_{12}&\ldots& a_{1n}\\a_{21}&a_{22}&\ldots&0\\\vdots&\vdots&&\vdots\\a_{n1}&0&\ldots&0\end{vmatrix}=\begin{vmatrix}0&\dots&0& a_{1n}\\0&\dots&a_{2,n-1}&a_{2n}\\\vdots&&\vdots&\vdots\\a_{n1}&\dots&a_{n,n-1}&a_{nn}\end{vmatrix}=(-1)^{\frac{n(n-1)}{2}}a_{1n}a_{2,n-1}\dots a_{n1} ∣∣a11a21⋮an1a12a22⋮0………a1n0⋮0∣∣=∣∣00⋮an1………0a2,n−1⋮an,n−1a1na2n⋮ann∣∣=(−1)2n(n−1)a1na2,n−1…an1
- Laplace expansion : ∣ A ∗ O B ∣ = ∣ A O ∗ B ∣ = ∣ A ∣ ∗ ∣ B ∣ \begin{vmatrix}A&*\\O&B\end{vmatrix}=\begin{vmatrix}A&O\\*&B\end{vmatrix}=|A|*|B| ∣∣AO∗B∣∣=∣∣A∗OB∣∣=∣A∣∗∣B∣ ∣ O A B ∗ ∣ = ∣ ∗ A B O ∣ = ( − 1 ) n m ∣ A ∣ ∗ ∣ B ∣ \begin{vmatrix}O&A\\B&*\end{vmatrix}=\begin{vmatrix}*&A\\B&O\end{vmatrix}=(-1)^{nm}|A|*|B| ∣∣OBA∗∣∣=∣∣∗BAO∣∣=(−1)nm∣A∣∗∣B∣ m , n m,n m,n Respectively A , B A,B A,B The order of
- Vandermonde determinant : ∣ 1 1 … 1 x 1 x 2 … x n x 1 2 x 2 2 … x n 2 ⋮ ⋮ ⋮ x 1 n − 1 x 2 n − 1 … x n n − 1 ∣ = ∏ 1 ≤ j < i ≤ n ( x i − x j ) \begin{vmatrix}1&1&\dots&1\\x_1&x_2&\dots&x_n\\x_1^2&x_2^2&\dots&x_n^2\\\vdots&\vdots&&\vdots\\x_1^{n-1}&x_2^{n-1}&\dots&x_n^{n-1}\end{vmatrix}=\prod_{1≤j<i≤n}(x_i-x_j) ∣∣1x1x12⋮x1n−11x2x22⋮x2n−1…………1xnxn2⋮xnn−1∣∣=1≤j<i≤n∏(xi−xj)
- Characteristic polynomial : set up A = ( a i j ) A=(a_{ij}) A=(aij) yes 3 3 3 Order matrix , be A A A Characteristic polynomials of ∣ λ E − A ∣ = λ 3 − ( a 11 + a 22 + a 33 ) λ 2 + s 2 λ − ∣ A ∣ \begin{vmatrix}\lambda E-A \end{vmatrix}=\lambda^{3}-(a_{11}+a_{22}+a_{33})\lambda^2+s_2\lambda-|A| ∣∣λE−A∣∣=λ3−(a11+a22+a33)λ2+s2λ−∣A∣ among s 2 = ∣ a 11 a 12 a 21 a 22 ∣ + ∣ a 11 a 13 a 31 a 33 ∣ + ∣ a 11 a 22 a 32 a 33 ∣ s_2=\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix}+\begin{vmatrix}a_{11}&a_{13}\\a_{31}&a_{33}\end{vmatrix}+\begin{vmatrix}a_{11}&a_{22}\\a_{32}&a_{33}\end{vmatrix} s2=∣∣a11a21a12a22∣∣+∣∣a11a31a13a33∣∣+∣∣a11a32a22a33∣∣
Kramer's law
if n n n An equation n n n A system of linear equations with unknown numbers : { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 … a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n \begin{cases}a_{11}x_1+a_{12}x_2+\dots+a_{1n}x_n=b_1\\a_{21}x_1+a_{22}x_2+\dots+a_{2n}x_n=b_2\\\dots\\a_{n1}x_1+a_{n2}x_2+\dots+a_{nn}x_n=b_n\\\end{cases} ⎩⎨⎧a11x1+a12x2+⋯+a1nxn=b1a21x1+a22x2+⋯+a2nxn=b2…an1x1+an2x2+⋯+annxn=bn The determinant of : D = ∣ A ∣ = ∣ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 … a n n ∣ ≠ 0 D=|A|=\begin{vmatrix}a_{11}&a_{12}&\dots&a_{1n}\\a_{21}&a_{22}&\dots&a_{2n}\\\vdots&\vdots&&\vdots\\a_{n1}&a_{n2}&\dots&a_{nn}\end{vmatrix}≠0 D=∣A∣=∣∣a11a21⋮an1a12a22⋮an2………a1na2n⋮ann∣∣=0 Then the equations have a unique solution : x 1 = D 1 D , x 2 = D 2 D , … , x n = D n D x_1=\frac{D_1}{D},x_2=\frac{D_2}{D},\dots,x_n=\frac{D_n}{D} x1=DD1,x2=DD2,…,xn=DDn among D j = ∑ i = 1 n b i A i j = ∣ a 11 … a 1 , j − 1 b 1 a 1 , j + 1 … a 1 n a 21 … a 2 , j − 1 b 2 a 2 , j + 1 … a 2 n ⋮ ⋮ ⋮ ⋮ ⋮ a n 1 … a n , j − 1 b 1 a n , j + 1 … a n n ∣ ( j = 1 , 2 , … , n ) D_j=\sum_{i=1}^nb_iA_{ij}=\begin{vmatrix}a_{11}&\dots&a_{1,j-1}&b_1&a_{1,j+1}&\dots&a_{1n}\\a_{21}&\dots&a_{2,j-1}&b_2&a_{2,j+1}&\dots&a_{2n}\\\vdots&&\vdots&\vdots&\vdots&&\vdots\\a_{n1}&\dots&a_{n,j-1}&b_1&a_{n,j+1}&\dots&a_{nn}\end{vmatrix}(j=1,2,\dots,n) Dj=i=1∑nbiAij=∣∣a11a21⋮an1………a1,j−1a2,j−1⋮an,j−1b1b2⋮b1a1,j+1a2,j+1⋮an,j+1………a1na2n⋮ann∣∣(j=1,2,…,n)
If homogeneous equations : { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = 0 … a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = 0 \begin{cases}a_{11}x_1+a_{12}x_2+\dots+a_{1n}x_n=0\\a_{21}x_1+a_{22}x_2+\dots+a_{2n}x_n=0\\\dots\\a_{n1}x_1+a_{n2}x_2+\dots+a_{nn}x_n=0\\\end{cases} ⎩⎨⎧a11x1+a12x2+⋯+a1nxn=0a21x1+a22x2+⋯+a2nxn=0…an1x1+an2x2+⋯+annxn=0 The coefficient determinant of is not 0 0 0, Then the equations have only zero solutions .
If homogeneous equations : { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = 0 … a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = 0 \begin{cases}a_{11}x_1+a_{12}x_2+\dots+a_{1n}x_n=0\\a_{21}x_1+a_{22}x_2+\dots+a_{2n}x_n=0\\\dots\\a_{n1}x_1+a_{n2}x_2+\dots+a_{nn}x_n=0\\\end{cases} ⎩⎨⎧a11x1+a12x2+⋯+a1nxn=0a21x1+a22x2+⋯+a2nxn=0…an1x1+an2x2+⋯+annxn=0 There is a nonzero solution , Then the coefficient determinant ∣ A ∣ = 0 |A|=0 ∣A∣=0.
边栏推荐
- This is an incomplete data competition Yearbook!
- English语法_不定代词 - 常用短语
- Some suggestions for programmers to leave single
- 机器学习之线性回归(最小二乘法手写+sklearn实现)
- [Yugong series] go teaching course 009 in July 2022 - floating point type of data type
- Be tolerant and generous
- Docker安装Redis、配置及远程连接
- Detailed explanation: what is the GPS Beidou time service server?
- MySQL logging system: binlog, redo log and undo log
- Sed, regular expression of shell programming
猜你喜欢

Vector implementation

跟着田老师学实用英语语法(持续更新)

SAP Fiori @OData. Analysis of the working principle of publish annotation

"Focus on machines": Zhu Songchun's team built a two-way value alignment system between people and robots to solve major challenges in the field of human-computer cooperation

This developer, who has been on the list for four consecutive weeks, has lived like a contemporary college student

不堆概念、换个角度聊多线程并发编程

跟着武老师学高数——函数、极限和连续(持续更新)

Leetcode question brushing - sorting
![[jetson][转载]jetson上安装pycharm](/img/65/ba7f1e7bd1b39cd67018e3f17d465b.png)
[jetson][转载]jetson上安装pycharm

Dynamics 365Online 如何自定义商机关闭窗体
随机推荐
智慧解决问题
Linear regression of machine learning (least square handwriting +sklearn Implementation)
2021年CS保研经历(四):西交软院预推免、信工所三室预推免
云服务大厂高管大变阵:技术派让位销售派
函数——(C游记)
【论文阅读】I-BERT: Integer-only BERT Quantization
Vim到底可以配置得多漂亮?
10 suggestions for 10x improvement of application performance
2021年CS保研经历(六):系统填报 + 一些感想
This is an incomplete data competition Yearbook!
Skiasharp's WPF self drawn bouncing ball (case version)
Be tolerant and generous
尹伊:我的学习成长路径
Leetcode question brushing - sorting
Sed, regular expression of shell programming
Is it safe to open an account online now? Do you want to know that you must go to the business hall to open an account now?
Div horizontal arrangement
Several common design methods of test cases [easy to understand]
机器学习之线性回归(最小二乘法手写+sklearn实现)
“为机器立心”:朱松纯团队搭建人与机器人的价值双向对齐系统,解决人机协作领域的重大挑战