当前位置:网站首页>Follow teacher Li to learn line generation determinant (continuous update)
Follow teacher Li to learn line generation determinant (continuous update)
2022-07-29 10:09:00 【Super seed code】
List of articles
Concept
- determinant : Determinant is the algebraic sum of the products of different row and column elements ( common n ! n! n! term ).
- array : from 1 , 2 , … , n 1,2,\ldots,n 1,2,…,n An ordered array of components is called a n n n Rank arrangement , Usually use j 1 , j 2 … j n j_1,j_2\ldots j_n j1,j2…jn Express n n n Rank arrangement .
- Reverse order number : In the arrangement , If a large number is in front of a small number , Say that these two numbers form a reverse order . The total number of a permutation in reverse order is called the reverse number of this permutation , use C ( j 1 j 2 … j n ) C(j_1j_2\ldots j_n) C(j1j2…jn) Indicates arrangement j 1 j 2 … j n j_1j_2\ldots j_n j1j2…jn In reverse order . If the reverse order number of an arrangement is even , Then this arrangement is called an even arrangement, otherwise it is called an odd arrangement .
- 2 Step determinant : ∣ a b c d ∣ = a d − b c \begin{vmatrix}a&b\\c&d\end{vmatrix}=ad-bc ∣∣acbd∣∣=ad−bc
- 3 Step determinant : ∣ a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 ∣ = a 1 b 2 c 3 + a 2 b 3 c 1 + a 3 b 1 c 2 − a 3 b 2 c 1 − a 2 b 1 c 3 − a 1 b 3 c 2 \begin{vmatrix}a_1&a_2&a_3\\b_1&b_2&b_3\\c_1&c_2&c_3\end{vmatrix}=a_1b_2c_3+a_2b_3c_1+a_3b_1c_2-a_3b_2c_1-a_2b_1c_3-a_1b_3c_2 ∣∣a1b1c1a2b2c2a3b3c3∣∣=a1b2c3+a2b3c1+a3b1c2−a3b2c1−a2b1c3−a1b3c2
- n n n Step determinant : ∣ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 … a n n ∣ = ∑ j 1 j 2 … j n ( − 1 ) C ( j 1 j 2 … j n ) a 1 j 1 a 2 j 2 … a n j n \begin{vmatrix}a_{11} &a_{12}&\ldots&a_{1n}\\a_{21} &a_{22}&\ldots&a_{2n}\\\vdots&\vdots&&\vdots&\\a_{n1}&a_{n2}&\ldots&a_{nn}\end{vmatrix}=\sum_{j_1j_2\ldots j_n}(-1)^{C(j_1j_2\ldots j_n)}a_{1j_1}a_{2j_2}\dots a_{nj_n} ∣∣a11a21⋮an1a12a22⋮an2………a1na2n⋮ann∣∣=j1j2…jn∑(−1)C(j1j2…jn)a1j1a2j2…anjn Different rows and columns n n n Algebraic sum of the product of elements , When j 1 j 2 … j n j_1j_2\dots j_n j1j2…jn It is even arrangement , This item is preceded by a positive sign ; When j 1 j 2 … j n j_1j_2\dots j_n j1j2…jn When it is an odd arrangement , This item is preceded by a minus sign .
- The remainder formula : The second part of the determinant i i i Xing He j j j Column out , Then the remaining determinant is a i j a_{ij} aij The Yu Zi form of , Write it down as M i j M_{ij} Mij, remember A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(−1)i+jMij by a i j a_{ij} aij The algebraic covalent of .
nature
- The value of the transposed determinant remains unchanged , namely ∣ A T ∣ = ∣ A ∣ |A^T|=|A| ∣AT∣=∣A∣
- A line has a common factor k k k, The common factor k k k When it comes to determinants , Special , All elements in a row are zero , Then the value of determinant is 0 0 0.
- Two lines exchange determinant sign , Special , Two lines are equal , The determinant value is 0 0 0; The two lines are proportional , The determinant value is 0 0 0.
- All elements in a row are the sum of two numbers , Then it can be written as the sum of two determinants . ∣ a 1 + b 1 a 2 + b 2 a 3 + b 3 c 1 c 2 c 3 d 1 d 2 d 3 ∣ = ∣ a 1 a 2 a 3 c 1 c 2 c 3 d 1 d 2 d 3 ∣ = ∣ b 1 b 2 b 3 c 1 c 2 c 3 d 1 d 2 d 3 ∣ \begin{vmatrix}a_1+b_1&a_2+b_2&a_3+b_3\\c_1&c_2&c_3\\d_1&d_2&d_3\end{vmatrix}=\begin{vmatrix}a_1&a_2&a_3\\c_1&c_2&c_3\\d_1&d_2&d_3\end{vmatrix}=\begin{vmatrix}b_1&b_2&b_3\\c_1&c_2&c_3\\d_1&d_2&d_3\end{vmatrix} ∣∣a1+b1c1d1a2+b2c2d2a3+b3c3d3∣∣=∣∣a1c1d1a2c2d2a3c3d3∣∣=∣∣b1c1d1b2c2d2b3c3d3∣∣
- Of a certain line k k k Multiply to another line , The value of the determinant remains unchanged .
- Algebraic cofactor : Press i OK, expand : ∣ A ∣ = a i 1 ∣ A i 1 ∣ + a i 2 ∣ A i 2 ∣ + … + a i n ∣ A i n ∣ Press i OK, expand :|A|=a_{i1}|A_{i1}|+a_{i2}|A_{i2}|+\ldots+a_{in}|A_{in}| Press i OK, expand :∣A∣=ai1∣Ai1∣+ai2∣Ai2∣+…+ain∣Ain∣ Press j Column expansion : ∣ A ∣ = a 1 j ∣ A 1 j ∣ + a 2 j ∣ A 2 j ∣ + … + a n j ∣ A n j ∣ Press j Column expansion :|A|=a_{1j}|A_{1j}|+a_{2j}|A_{2j}|+\ldots+a_{nj}|A_{nj}| Press j Column expansion :∣A∣=a1j∣A1j∣+a2j∣A2j∣+…+anj∣Anj∣
- The sum of the algebraic cofactor products of all elements in one row and the corresponding elements in another row is equal to 0 0 0. a 11 A 21 + a 12 A 22 + a 13 A 23 = 0 a_{11}A_{21}+a_{12}A_{22}+a_{13}A_{23}=0 a11A21+a12A22+a13A23=0
Important formula
- On ( Next ) The value of the trigonometric determinant is equal to the product of the main diagonal elements : ∣ a 11 a 12 … a 1 n 0 a 22 … a 2 n ⋮ ⋮ ⋮ 0 0 … a n n ∣ = ∣ a 11 0 … 0 a 21 a 22 … 0 ⋮ ⋮ ⋮ a n 1 a n 2 … a n n ∣ = a 11 a 22 … a n n \begin{vmatrix}a_{11}&a_{12}&\ldots& a_{1n}\\0&a_{22}&\ldots&a_{2n}\\\vdots&\vdots&&\vdots\\0&0&\ldots&a_{nn}\end{vmatrix}=\begin{vmatrix}a_{11}&0&\ldots& 0\\a_{21}&a_{22}&\ldots&0\\\vdots&\vdots&&\vdots\\a_{n1}&a_{n2}&\ldots&a_{nn}\end{vmatrix}=a_{11}a_{22}\dots a_{nn} ∣∣a110⋮0a12a22⋮0………a1na2n⋮ann∣∣=∣∣a11a21⋮an10a22⋮an2………00⋮ann∣∣=a11a22…ann
- On the sub diagonal determinant : ∣ a 11 a 12 … a 1 n a 21 a 22 … 0 ⋮ ⋮ ⋮ a n 1 0 … 0 ∣ = ∣ 0 … 0 a 1 n 0 … a 2 , n − 1 a 2 n ⋮ ⋮ ⋮ a n 1 … a n , n − 1 a n n ∣ = ( − 1 ) n ( n − 1 ) 2 a 1 n a 2 , n − 1 … a n 1 \begin{vmatrix}a_{11}&a_{12}&\ldots& a_{1n}\\a_{21}&a_{22}&\ldots&0\\\vdots&\vdots&&\vdots\\a_{n1}&0&\ldots&0\end{vmatrix}=\begin{vmatrix}0&\dots&0& a_{1n}\\0&\dots&a_{2,n-1}&a_{2n}\\\vdots&&\vdots&\vdots\\a_{n1}&\dots&a_{n,n-1}&a_{nn}\end{vmatrix}=(-1)^{\frac{n(n-1)}{2}}a_{1n}a_{2,n-1}\dots a_{n1} ∣∣a11a21⋮an1a12a22⋮0………a1n0⋮0∣∣=∣∣00⋮an1………0a2,n−1⋮an,n−1a1na2n⋮ann∣∣=(−1)2n(n−1)a1na2,n−1…an1
- Laplace expansion : ∣ A ∗ O B ∣ = ∣ A O ∗ B ∣ = ∣ A ∣ ∗ ∣ B ∣ \begin{vmatrix}A&*\\O&B\end{vmatrix}=\begin{vmatrix}A&O\\*&B\end{vmatrix}=|A|*|B| ∣∣AO∗B∣∣=∣∣A∗OB∣∣=∣A∣∗∣B∣ ∣ O A B ∗ ∣ = ∣ ∗ A B O ∣ = ( − 1 ) n m ∣ A ∣ ∗ ∣ B ∣ \begin{vmatrix}O&A\\B&*\end{vmatrix}=\begin{vmatrix}*&A\\B&O\end{vmatrix}=(-1)^{nm}|A|*|B| ∣∣OBA∗∣∣=∣∣∗BAO∣∣=(−1)nm∣A∣∗∣B∣ m , n m,n m,n Respectively A , B A,B A,B The order of
- Vandermonde determinant : ∣ 1 1 … 1 x 1 x 2 … x n x 1 2 x 2 2 … x n 2 ⋮ ⋮ ⋮ x 1 n − 1 x 2 n − 1 … x n n − 1 ∣ = ∏ 1 ≤ j < i ≤ n ( x i − x j ) \begin{vmatrix}1&1&\dots&1\\x_1&x_2&\dots&x_n\\x_1^2&x_2^2&\dots&x_n^2\\\vdots&\vdots&&\vdots\\x_1^{n-1}&x_2^{n-1}&\dots&x_n^{n-1}\end{vmatrix}=\prod_{1≤j<i≤n}(x_i-x_j) ∣∣1x1x12⋮x1n−11x2x22⋮x2n−1…………1xnxn2⋮xnn−1∣∣=1≤j<i≤n∏(xi−xj)
- Characteristic polynomial : set up A = ( a i j ) A=(a_{ij}) A=(aij) yes 3 3 3 Order matrix , be A A A Characteristic polynomials of ∣ λ E − A ∣ = λ 3 − ( a 11 + a 22 + a 33 ) λ 2 + s 2 λ − ∣ A ∣ \begin{vmatrix}\lambda E-A \end{vmatrix}=\lambda^{3}-(a_{11}+a_{22}+a_{33})\lambda^2+s_2\lambda-|A| ∣∣λE−A∣∣=λ3−(a11+a22+a33)λ2+s2λ−∣A∣ among s 2 = ∣ a 11 a 12 a 21 a 22 ∣ + ∣ a 11 a 13 a 31 a 33 ∣ + ∣ a 11 a 22 a 32 a 33 ∣ s_2=\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix}+\begin{vmatrix}a_{11}&a_{13}\\a_{31}&a_{33}\end{vmatrix}+\begin{vmatrix}a_{11}&a_{22}\\a_{32}&a_{33}\end{vmatrix} s2=∣∣a11a21a12a22∣∣+∣∣a11a31a13a33∣∣+∣∣a11a32a22a33∣∣
Kramer's law
if n n n An equation n n n A system of linear equations with unknown numbers : { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 … a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n \begin{cases}a_{11}x_1+a_{12}x_2+\dots+a_{1n}x_n=b_1\\a_{21}x_1+a_{22}x_2+\dots+a_{2n}x_n=b_2\\\dots\\a_{n1}x_1+a_{n2}x_2+\dots+a_{nn}x_n=b_n\\\end{cases} ⎩⎨⎧a11x1+a12x2+⋯+a1nxn=b1a21x1+a22x2+⋯+a2nxn=b2…an1x1+an2x2+⋯+annxn=bn The determinant of : D = ∣ A ∣ = ∣ a 11 a 12 … a 1 n a 21 a 22 … a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 … a n n ∣ ≠ 0 D=|A|=\begin{vmatrix}a_{11}&a_{12}&\dots&a_{1n}\\a_{21}&a_{22}&\dots&a_{2n}\\\vdots&\vdots&&\vdots\\a_{n1}&a_{n2}&\dots&a_{nn}\end{vmatrix}≠0 D=∣A∣=∣∣a11a21⋮an1a12a22⋮an2………a1na2n⋮ann∣∣=0 Then the equations have a unique solution : x 1 = D 1 D , x 2 = D 2 D , … , x n = D n D x_1=\frac{D_1}{D},x_2=\frac{D_2}{D},\dots,x_n=\frac{D_n}{D} x1=DD1,x2=DD2,…,xn=DDn among D j = ∑ i = 1 n b i A i j = ∣ a 11 … a 1 , j − 1 b 1 a 1 , j + 1 … a 1 n a 21 … a 2 , j − 1 b 2 a 2 , j + 1 … a 2 n ⋮ ⋮ ⋮ ⋮ ⋮ a n 1 … a n , j − 1 b 1 a n , j + 1 … a n n ∣ ( j = 1 , 2 , … , n ) D_j=\sum_{i=1}^nb_iA_{ij}=\begin{vmatrix}a_{11}&\dots&a_{1,j-1}&b_1&a_{1,j+1}&\dots&a_{1n}\\a_{21}&\dots&a_{2,j-1}&b_2&a_{2,j+1}&\dots&a_{2n}\\\vdots&&\vdots&\vdots&\vdots&&\vdots\\a_{n1}&\dots&a_{n,j-1}&b_1&a_{n,j+1}&\dots&a_{nn}\end{vmatrix}(j=1,2,\dots,n) Dj=i=1∑nbiAij=∣∣a11a21⋮an1………a1,j−1a2,j−1⋮an,j−1b1b2⋮b1a1,j+1a2,j+1⋮an,j+1………a1na2n⋮ann∣∣(j=1,2,…,n)
If homogeneous equations : { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = 0 … a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = 0 \begin{cases}a_{11}x_1+a_{12}x_2+\dots+a_{1n}x_n=0\\a_{21}x_1+a_{22}x_2+\dots+a_{2n}x_n=0\\\dots\\a_{n1}x_1+a_{n2}x_2+\dots+a_{nn}x_n=0\\\end{cases} ⎩⎨⎧a11x1+a12x2+⋯+a1nxn=0a21x1+a22x2+⋯+a2nxn=0…an1x1+an2x2+⋯+annxn=0 The coefficient determinant of is not 0 0 0, Then the equations have only zero solutions .
If homogeneous equations : { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = 0 … a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = 0 \begin{cases}a_{11}x_1+a_{12}x_2+\dots+a_{1n}x_n=0\\a_{21}x_1+a_{22}x_2+\dots+a_{2n}x_n=0\\\dots\\a_{n1}x_1+a_{n2}x_2+\dots+a_{nn}x_n=0\\\end{cases} ⎩⎨⎧a11x1+a12x2+⋯+a1nxn=0a21x1+a22x2+⋯+a2nxn=0…an1x1+an2x2+⋯+annxn=0 There is a nonzero solution , Then the coefficient determinant ∣ A ∣ = 0 |A|=0 ∣A∣=0.
边栏推荐
- Comprehensively design an oppe home page -- the bottom of the page
- Modulenotfounderror: no module named 'pywt' solution
- 机器学习之线性回归(最小二乘法手写+sklearn实现)
- 【日志框架】
- ORBSLAM2安装测试,及各种问题汇总
- [Yugong series] go teaching course 010 in July 2022 - Boolean and character types of data types
- Uniswap entered the NFT trading market and opensea took the lead
- 2021年CS保研经历(六):系统填报 + 一些感想
- 那句话的作用
- Sed, regular expression of shell programming
猜你喜欢

MySQL infrastructure: SQL query statement execution process
![[AAAI] attention based spatiotemporal graph convolution network for traffic flow prediction](/img/3d/717bc3a47a58470edd7a815a976320.png)
[AAAI] attention based spatiotemporal graph convolution network for traffic flow prediction

【论文阅读】I-BERT: Integer-only BERT Quantization

7.9-7.17 new features and grammar of learning plan ES6

Anfulai embedded weekly report no. 273: 2022.07.04--2022.07.10

Problems and solutions of introducing redis cache

Implementation and verification logic of complex expression input component

Knowledge points of common interview questions: distributed lock

通俗易懂讲解梯度下降法!

关系型数据库之MySQL8——由内而外的深化全面学习
随机推荐
汉源高科千兆2光6电导轨式网管型工业级以太网交换机支持X-Ring冗余环网一键环网交换机
最新翻译的官方PyTorch简易入门教程(PyTorch1.0版本)
Notes for Resume Writing
[ts]typescript learning record pit collection
【论文阅读】Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT
div水平布局两边对齐
Correct posture and landing practice of R & D efficiency measurement (speech ppt sharing version)
电竞入亚后,腾讯要做下一个“NBA赛事捕手”?
SkiaSharp 之 WPF 自绘 弹动小球(案例版)
通俗易懂讲解梯度下降法!
高效能7个习惯学习笔记
After the thunderstorm of two encryption companies: Celsius repayment guarantee collateral, three arrow capital closed and disappeared
7.9-7.17 new features and grammar of learning plan ES6
Sublime Text3 设置不同文件不同缩进
Google Earth engine (GEE) -- calculate the location of the center point, the external boundary, the external polygon, fuse and simplify the boundary and return it to the vector set
程序员脱离单身的一些建议
Linear regression of machine learning (least square handwriting +sklearn Implementation)
待人宽容大度
Selenium series 5-xpath path expression
How big is the bandwidth of the Tiktok server for hundreds of millions of people to brush at the same time?