当前位置:网站首页>Equation Derivation Proof of Vector Triple Product
Equation Derivation Proof of Vector Triple Product
2022-07-30 07:50:00 【sunset stained ramp】
目标:最近在看论文,Some basic formula reasoning is required,Equations for triple products are often encountered.为了更深入的理解.So derive this formula.
定义:
向量三重积
a → × ( b → × c → ) = ( a → ⋅ c → ) ⋅ b → − ( a → ⋅ b → ) ⋅ c → \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})= (\overrightarrow{a} \cdot \overrightarrow{c}) \cdot\overrightarrow{b} - (\overrightarrow{a} \cdot \overrightarrow{b}) \cdot\overrightarrow{c} a×(b×c)=(a⋅c)⋅b−(a⋅b)⋅c
其中 a → = ( a 0 , a 1 , . . . , a n ) \overrightarrow{a}=(a_0,a_1,...,a_n) a=(a0,a1,...,an); b → = ( b 0 , b 1 , . . . , b n ) \overrightarrow{b}=(b_0,b_1,...,b_n) b=(b0,b1,...,bn); c → = ( c 0 , c 1 , . . . , c n ) \overrightarrow{c}=(c_0,c_1,...,c_n) c=(c0,c1,...,cn)
General in space vector n = 3 n=3 n=3
证明,It can be proved in two ways
第一种是最简单的方式,Expand the left and right items directly.
In general, the cross product can be converted to the product of a matrix and a vector.The transformation is shown below
S k e w ( a ) = [ 0 − a 2 a 1 a 2 0 − a 0 − a 1 a 0 0 ] Skew(a) = \begin{bmatrix} 0 \space \space -a_2 \space \space a_1 \\ a_2 \space \space 0 \space \space -a_0 \\ -a_1 \space \space a_0 \space \space 0 \end{bmatrix} Skew(a)=⎣⎡0 −a2 a1a2 0 −a0−a1 a0 0⎦⎤
So the formula on the left is :
a → × ( b → × c → ) = s k e w ( a → ) ( s k e w ( b → ) c → ) = [ 0 − a 2 a 1 a 2 0 − a 0 − a 1 a 0 0 ] [ 0 − b 2 b 1 b 2 0 − b 0 − b 1 b 0 0 ] [ c 0 c 1 c 2 ] = [ 0 − a 2 a 1 a 2 0 − a 0 − a 1 a 0 0 ] [ b 1 c 2 − b 2 c 1 b 2 c 0 − b 0 c 2 b 0 c 1 − b 1 c 0 ] = [ − a 2 ( b 2 c 0 − b 0 c 2 ) + a 1 ( b 0 c 1 − b 1 c 0 ) a 2 ( b 1 c 2 − b 2 c 1 ) − a 0 ( b 0 c 1 − b 1 c 0 ) − a 1 ( b 1 c 2 − b 2 c 1 ) + a 0 ( b 2 c 0 − b 0 c 2 ) ] = [ ( a 1 c 1 + a 2 c 2 ) b 0 − ( a 1 b 1 + a 2 b 2 ) c 0 ( a 0 c 0 + a 2 c 2 ) b 1 − ( a 0 b 0 + a 2 b 2 ) c 1 ( a 0 c 0 + a 1 c 1 ) b 2 − ( a 0 b 0 + a 1 b 1 ) c 2 ] = [ ( a 0 c 0 + a 1 c 1 + a 2 c 2 ) b 0 − ( a 0 b 0 + a 1 b 1 + a 2 b 2 ) c 0 ( a 0 c 0 + a 1 c 1 + a 2 c 2 ) b 1 − ( a 0 b 0 + a 1 b 1 + a 2 b 2 ) c 1 ( a 0 c 0 + a 1 c 1 + a 2 c 2 ) b 2 − ( a 0 b 0 + a 1 b 1 + a 2 b 2 ) c 2 ] = ( a → ⋅ c → ) ⋅ b → − ( a → ⋅ b → ) ⋅ c → \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) \\ =skew(\overrightarrow{a})(skew(\overrightarrow{b})\overrightarrow{c}) \\ = \begin{bmatrix} 0 \space \space -a_2 \space \space a_1 \\ a_2 \space \space 0 \space \space -a_0 \\ -a_1 \space \space a_0 \space \space 0 \end{bmatrix} \begin{bmatrix} 0 \space \space -b_2 \space \space b_1 \\ b_2 \space \space 0 \space \space -b_0 \\ -b_1 \space \space b_0 \space \space 0 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} =\begin{bmatrix} 0 \space \space -a_2 \space \space a_1 \\ a_2 \space \space 0 \space \space -a_0 \\ -a_1 \space \space a_0 \space \space 0 \end{bmatrix} \begin{bmatrix} b_1c_2-b_2c_1 \\ b_2c_0-b_0c_2 \\ b_0c_1-b_1c_0 \end{bmatrix} \\ \\ =\begin{bmatrix} -a_2(b_2c_0-b_0c_2) + a_1(b_0c_1-b_1c_0) \\ a_2(b_1c_2-b_2c_1) - a_0(b_0c_1-b_1c_0) \\ -a_1(b_1c_2-b_2c_1) + a_0(b_2c_0-b_0c_2) \end{bmatrix} = \begin{bmatrix} (a_1c_1+a_2c_2)b_0 - (a_1b_1+a_2b_2)c_0 \\ (a_0c_0+a_2c_2)b_1 - (a_0b_0+a_2b_2)c_1 \\ (a_0c_0+a_1c_1)b_2 - (a_0b_0+a_1b_1)c_2 \end{bmatrix} \\ = \begin{bmatrix} (a_0c_0+a_1c_1+a_2c_2)b_0 - (a_0b_0+a_1b_1+a_2b_2)c_0 \\ (a_0c_0+a_1c_1+a_2c_2)b_1 - (a_0b_0+a_1b_1+a_2b_2)c_1 \\ (a_0c_0+a_1c_1+a_2c_2)b_2 - (a_0b_0+a_1b_1+a_2b_2)c_2 \end{bmatrix} = (\overrightarrow{a} \cdot \overrightarrow{c}) \cdot\overrightarrow{b} - (\overrightarrow{a} \cdot \overrightarrow{b}) \cdot\overrightarrow{c} a×(b×c)=skew(a)(skew(b)c)=⎣⎡0 −a2 a1a2 0 −a0−a1 a0 0⎦⎤⎣⎡0 −b2 b1b2 0 −b0−b1 b0 0⎦⎤⎣⎡c0c1c2⎦⎤=⎣⎡0 −a2 a1a2 0 −a0−a1 a0 0⎦⎤⎣⎡b1c2−b2c1b2c0−b0c2b0c1−b1c0⎦⎤=⎣⎡−a2(b2c0−b0c2)+a1(b0c1−b1c0)a2(b1c2−b2c1)−a0(b0c1−b1c0)−a1(b1c2−b2c1)+a0(b2c0−b0c2)⎦⎤=⎣⎡(a1c1+a2c2)b0−(a1b1+a2b2)c0(a0c0+a2c2)b1−(a0b0+a2b2)c1(a0c0+a1c1)b2−(a0b0+a1b1)c2⎦⎤=⎣⎡(a0c0+a1c1+a2c2)b0−(a0b0+a1b1+a2b2)c0(a0c0+a1c1+a2c2)b1−(a0b0+a1b1+a2b2)c1(a0c0+a1c1+a2c2)b2−(a0b0+a1b1+a2b2)c2⎦⎤=(a⋅c)⋅b−(a⋅b)⋅c
证明完毕.
第二种方法: in a geometrically meaningful way.It has the heuristic kind.It is recommended to use this method to prove the equation for the triple product above.
To make it easier for everyone to understand,画出图像,得到下图

Because of the cross product,is the vertical vector of the two vectors.比如 b → × c → \overrightarrow{b} \times \overrightarrow{c} b×c,it is perpendicular to b → , c → \overrightarrow{b},\overrightarrow{c} b,cThe plane in which the two vectors of .
Arbitrary vectors at the same time a → \overrightarrow{a} a和 b → × c → \overrightarrow{b} \times \overrightarrow{c} b×c叉乘.The resulting vector must be parallel to b → , c → \overrightarrow{b},\overrightarrow{c} b,cThe plane in which the two vectors of .(The red line segment represents).因此可以写成如下:
a → × ( b → × c → ) = m b → + n c → \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})=m\overrightarrow{b}+n\overrightarrow{c} a×(b×c)=mb+nc
Because the red vector a → × ( b → × c → ) \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) a×(b×c)和 a → \overrightarrow{a} a垂直.因此:
a → ⋅ ( a → × ( b → × c → ) ) = 0 = > a → ⋅ ( m b → + n c → ) = 0 = > m ( a → ⋅ b → ) + n ( a → ⋅ c → ) = 0 \overrightarrow{a} \cdot(\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})) = 0 \\ =>\overrightarrow{a} \cdot(m\overrightarrow{b}+n\overrightarrow{c}) = 0 \\ =>m(\overrightarrow{a} \cdot \overrightarrow{b}) + n(\overrightarrow{a} \cdot \overrightarrow{c})=0 a⋅(a×(b×c))=0=>a⋅(mb+nc)=0=>m(a⋅b)+n(a⋅c)=0
To solve the above formula,We use construction,Construct two numbers such that the above formula holds.构造如下:
存在 p ∈ R p\in R p∈R;且 m = p ( a → ⋅ c → ) m=p(\overrightarrow{a} \cdot \overrightarrow{c}) m=p(a⋅c); n = − p ( a → ⋅ b → ) n=-p(\overrightarrow{a} \cdot \overrightarrow{b}) n=−p(a⋅b),Make the above formula hold constant.为了方便理解,The constructed terms are brought into the formula m ( a → ⋅ b → ) + n ( a → ⋅ c → ) = 0 m(\overrightarrow{a} \cdot \overrightarrow{b}) + n(\overrightarrow{a} \cdot \overrightarrow{c})=0 m(a⋅b)+n(a⋅c)=0
m ( a → ⋅ b → ) + n ( a → ⋅ c → ) = 0 = p ( a → ⋅ c → ) ( a → ⋅ b → ) − p ( a → ⋅ b → ) ( a → ⋅ c → ) = 0 m(\overrightarrow{a} \cdot \overrightarrow{b}) + n(\overrightarrow{a} \cdot \overrightarrow{c})=0 \\ =p(\overrightarrow{a} \cdot \overrightarrow{c})(\overrightarrow{a} \cdot \overrightarrow{b})-p(\overrightarrow{a} \cdot \overrightarrow{b})(\overrightarrow{a} \cdot \overrightarrow{c})=0 m(a⋅b)+n(a⋅c)=0=p(a⋅c)(a⋅b)−p(a⋅b)(a⋅c)=0
The substituted equation can see that the above is a middle identity.
The above equation and vector a → \overrightarrow{a} a, b → \overrightarrow{b} b, c → \overrightarrow{c} c取值无关.
因此将 m = p ( a → ⋅ c → ) m=p(\overrightarrow{a} \cdot \overrightarrow{c}) m=p(a⋅c); n = − p ( a → ⋅ b → ) n=-p(\overrightarrow{a} \cdot \overrightarrow{b}) n=−p(a⋅b),代入到 a → × ( b → × c → ) = m b → + n c → \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})=m\overrightarrow{b}+n\overrightarrow{c} a×(b×c)=mb+nc,得到如下公式:
a → × ( b → × c → ) = m b → + n c → = p ( a → ⋅ c → ) b → − p ( a → ⋅ b → ) c → \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})=m\overrightarrow{b}+n\overrightarrow{c}=p(\overrightarrow{a} \cdot \overrightarrow{c})\overrightarrow{b}-p(\overrightarrow{a} \cdot \overrightarrow{b})\overrightarrow{c} a×(b×c)=mb+nc=p(a⋅c)b−p(a⋅b)c
Because of the above formula and vector a → \overrightarrow{a} a, b → \overrightarrow{b} b, c → \overrightarrow{c} c无关,Simple vectors can be used a → = [ 1 , 1 , 1 ] \overrightarrow{a}=[1,1,1] a=[1,1,1]; b → = [ 0 , 1 , 0 ] \overrightarrow{b}=[0,1,0] b=[0,1,0]; c → = [ 0 , 0 , 1 ] \overrightarrow{c}=[0,0,1] c=[0,0,1]
Bring in the corresponding simple formula,就可以得到 p = 1 p=1 p=1
证明完毕.
参考资料如下:
https://www.youtube.com/watch?v=4U5fkwYDvZg
边栏推荐
猜你喜欢

Mastering JESD204B (1) – Debugging of AD6676

相机坐标系,世界坐标系,像素坐标系三者转换,以及OPENGLDEFocal Length和Opengl 的 Fov转换

The calculation proof of the intersection of the space line and the plane and its source code

PXE efficient mass network capacity

Mastering JESD204B (2) – Debugging of AD6676

C#的访问修饰符,声明修饰符,关键字有哪些?扫盲篇

Test development engineer growth diary 016 - those things about the test

Required request body is missing problem solving

Test Development Engineer Growth Diary 003 - Interface Automation Framework Construction

prometheus监控minio
随机推荐
计算矩阵的逆源码(使用伴随矩阵,3×3的矩阵)
openstack删除计算节点
Proof of distance calculation from space vertex to plane and its source code
B站崩了,如果是你是那晚负责的开发人员你会怎么做?
MongoDB-CUD without R
分布式系统中的开创者—莱斯利·兰伯特
The terminal connection tools, rolling Xshell
Multithreading basics (multithreaded memory, security, communication, thread pools and blocking queues)
Test the basics 01
PXE efficient mass network capacity
numpy 多维数组ndarray的详解
prometheus监控mysql
远程连接服务器的MySql
阿里二面:Sentinel vs Hystrix 对比,如何选择?
Test Development Engineer Growth Diary 018 - Record of Required Questions for Test Interview (Continuous Update)
相机坐标系,世界坐标系,像素坐标系三者转换,以及OPENGLDEFocal Length和Opengl 的 Fov转换
GadgetInspector principle analysis
MySql connecting to the server remotely
测开基础知识01
Mobile phone side scroll to page to specify location