当前位置:网站首页>助力涨点 | YOLOv5结合Alpha-IoU
助力涨点 | YOLOv5结合Alpha-IoU
2022-06-28 06:16:00 【加勒比海带66】
论文题目:《Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression》
论文地址: https://arxiv.org/abs/2110.13675v2

1.论文简介:
文中,作者将现有的基于IoU Loss推广到一个新的Power IoU系列 Loss,该系列具有一个Power IoU项和一个附加的Power正则项,具有单个Power参数α。称这种新的损失系列为α-IoU Loss。在多目标检测基准和模型上的实验表明,α-IoU损失:
可以显著地超过现有的基于IoU的损失;
通过调节α,使检测器在实现不同水平的bbox回归精度方面具有更大的灵活性;
对小数据集和噪声的鲁棒性更强。
实验结果表明,α(α>1)增加了high IoU目标的损失和梯度,进而提高了bbox回归精度。
power参数α可作为调节α-IoU损失的超参数以满足不同水平的bbox回归精度,其中α >1通过更多地关注High IoU目标来获得高的回归精度(即High IoU阈值)。
α对不同的模型或数据集并不过度敏感,在大多数情况下,α=3表现一贯良好。α-IoU损失家族可以很容易地用于改进检测器的效果,在干净或嘈杂的环境下,不会引入额外的参数,也不增加训练/推理时间。
2.相应代码:
def bbox_alpha_iou(box1, box2, x1y1x2y2=False, GIoU=False, DIoU=False, CIoU=False, EIoU=False, alpha=3, eps=1e-9):
# Returns tsqrt_he IoU of box1 to box2. box1 is 4, box2 is nx4
box2 = box2.T
# Get the coordinates of bounding boxes
if x1y1x2y2: # x1, y1, x2, y2 = box1
b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
else: # transform from xywh to xyxy
b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
# Intersection area
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
# Union Area
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
union = w1 * h1 + w2 * h2 - inter + eps
# change iou into pow(iou+eps) 加入α次幂
# alpha iou
iou = torch.pow(inter / union + eps, alpha)
beta = 2 * alpha
if GIoU or DIoU or CIoU or EIoU:
# 两个框的最小闭包区域的width和height
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
if CIoU or DIoU or EIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
# 最小外接矩形 对角线的长度平方
c2 = cw ** beta + ch ** beta + eps # convex diagonal
rho_x = torch.abs(b2_x1 + b2_x2 - b1_x1 - b1_x2)
rho_y = torch.abs(b2_y1 + b2_y2 - b1_y1 - b1_y2)
# 两个框中心点之间距离的平方
rho2 = (rho_x ** beta + rho_y ** beta) / (2 ** beta) # center distance
if DIoU:
return iou - rho2 / c2 # DIoU
elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
with torch.no_grad():
alpha_ciou = v / ((1 + eps) - inter / union + v)
# return iou - (rho2 / c2 + v * alpha_ciou) # CIoU
return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)) # CIoU
# EIoU 在CIoU的基础上
# 将预测框宽高的纵横比损失项 拆分成预测框的宽高分别与最小外接框宽高的差值
# 加速了收敛提高了回归精度
elif EIoU:
rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** beta
rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** beta
cw2 = cw ** beta + eps
ch2 = ch ** beta + eps
return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2)
# GIoU https://arxiv.org/pdf/1902.09630.pdf
c_area = torch.max(cw * ch + eps, union) # convex area
return iou - torch.pow((c_area - union) / c_area + eps, alpha) # GIoU
else:
return iou # torch.log(iou+eps) or iou
最后,将utils/loss.py文件中的iou=bbox_iou换成iou=bbox_alpha_iou即可。
边栏推荐
- lombok @EqualsAndHashCode 注解如何让对象.equals()方法只比较部分属性
- Xcode13.3.1 项目执行pod install后报错
- YYGH-6-微信登录
- Taobao seo training video course [22 lectures]
- 链表(二)——设计链表
- Alibaba cloud SMS service (Complete Guide), SMS sending function implementation.
- Idea generates entity classes from database tables
- MySQL (I) - Installation
- socke. IO long connection enables push, version control, and real-time active user statistics
- Scripting and programming languages
猜你喜欢

MySQL (I) - Installation

Linux Mysql 实现root用户不用密码登录

Introduction to browser tools: think sky browser, team work browser

Iframe switching in Web Automation

Yygh-8-appointment registration
![Taobao seo training video course [22 lectures]](/img/81/21e844542b35010760d061abe905e9.jpg)
Taobao seo training video course [22 lectures]

Slow content advertising: the long-term principle of brand growth

Linux MySQL implements root user login without password

链表(三)——反转链表

Uni app wechat applet sharing function
随机推荐
基本类型和包装类的区别
Idea automatically adds comments when creating classes
@The reason why the Autowired annotation is empty
Socket. Io long Connection Push, version Control, Real - Time Active user volume Statistics
Linux MySQL implements root user login without password
创建格式化时间,格式化时区的gson对象。json解析时间格式化 ZonedDateTime
Yygh-6-wechat login
Development trend of mobile advertising: Leveraging stock and fine marketing
PKG package node project (express)
Xcode13.3.1 error reported after pod install
What is webrtc?
mac下安装多个版本php并且进行管理
Lombok @equalsandhashcode annotation how to make objects The equals () method compares only some attributes
Using pytorch and tensorflow to calculate the confusion matrix of classification model
Taobao seo training video course [22 lectures]
手把手教你用Ucos
Xcode13.3.1 项目执行pod install后报错
JQ picture amplifier
idea创建类时自动添加注释
基于Kotlin+JetPack实现的MVVM框架的示例