当前位置:网站首页>opencv学习笔记四--银行卡号识别
opencv学习笔记四--银行卡号识别
2022-07-01 14:52:00 【Cloudy_to_sunny】
前期步骤
导入工具包
from imutils import contours
import numpy as np
import argparse
import cv2
import myutils
import matplotlib.pyplot as plt#Matplotlib是RGB
指定信用卡类型
# 指定信用卡类型(根据卡号第一位数字)
FIRST_NUMBER = {
"3": "American Express",
"4": "Visa",
"5": "MasterCard",
"6": "Discover Card"
}
定义绘图函数
# 绘图展示
def cv_show(name,img):
b,g,r = cv2.split(img)
img_rgb = cv2.merge((r,g,b))
plt.imshow(img_rgb)
plt.show()
def cv_show1(name,img):
plt.imshow(img)
plt.show()
cv2.imshow(name,img)
cv2.waitKey()
cv2.destroyAllWindows()
读入数据
# 读取一个模板图像
img = cv2.imread("./ocr_a_reference.png")
cv_show('img',img)

# 灰度图
ref = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv_show1('ref',ref)

# 二值图像
ref = cv2.threshold(ref, 10, 255, cv2.THRESH_BINARY_INV)[1]
cv_show1('ref',ref)

模板处理
计算轮廓
#cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),cv2.RETR_EXTERNAL只检测外轮廓,cv2.CHAIN_APPROX_SIMPLE只保留终点坐标
#返回的list中每个元素都是图像中的一个轮廓
ref_, refCnts, hierarchy = cv2.findContours(ref.copy(), cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img,refCnts,-1,(0,0,255),3)
cv_show1('img',img)

print (np.array(refCnts).shape)
refCnts = myutils.sort_contours(refCnts, method="left-to-right")[0] #排序,从左到右,从上到下
digits = {
}
(10,)
d:\Miniconda3\envs\learnCV\lib\site-packages\ipykernel_launcher.py:1: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
"""Entry point for launching an IPython kernel.
# 遍历每一个轮廓
for (i, c) in enumerate(refCnts):
# 计算外接矩形并且resize成合适大小
(x, y, w, h) = cv2.boundingRect(c)
roi = ref[y:y + h, x:x + w]
roi = cv2.resize(roi, (57, 88))
# 每一个数字对应每一个模板
digits[i] = roi
# 初始化卷积核
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 3))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
卡片处理
#读取输入图像,预处理
image = cv2.imread("./images/credit_card_01.png")
cv_show('image',image)
image = myutils.resize(image, width=300)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv_show1('gray',gray)


#礼帽操作,突出更明亮的区域
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel)
cv_show1('tophat',tophat)
# 计算x方向图像梯度
gradX = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, #ksize=-1相当于用3*3的
ksize=-1)

gradX = np.absolute(gradX)
(minVal, maxVal) = (np.min(gradX), np.max(gradX))
gradX = (255 * ((gradX - minVal) / (maxVal - minVal)))
gradX = gradX.astype("uint8")
print (np.array(gradX).shape)
cv_show1('gradX',gradX)
(189, 300)

#通过闭操作(先膨胀,再腐蚀)将数字连在一起
gradX = cv2.morphologyEx(gradX, cv2.MORPH_CLOSE, rectKernel)
cv_show1('gradX',gradX)
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-8AcGUyGC-1656380868739)(https://gitcode.net/weixin_41756645/csdnimage/-/raw/master/ocr_match_files/ocr_match_19_0.png)]
#THRESH_OTSU会自动寻找合适的阈值,适合双峰,需把阈值参数设置为0
thresh = cv2.threshold(gradX, 0, 255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv_show1('thresh',thresh)

#再来一个闭操作
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel) #再来一个闭操作
cv_show1('thresh',thresh)

# 计算轮廓
thresh_, threshCnts, hierarchy = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = threshCnts
cur_img = image.copy()
cv2.drawContours(cur_img,cnts,-1,(0,0,255),3)
cv_show('img',cur_img)
locs = []

# 遍历轮廓
for (i, c) in enumerate(cnts):
# 计算矩形
(x, y, w, h) = cv2.boundingRect(c)
ar = w / float(h)
# 选择合适的区域,根据实际任务来,这里的基本都是四个数字一组
if ar > 2.5 and ar < 4.0:
if (w > 40 and w < 55) and (h > 10 and h < 20):
#符合的留下来
locs.append((x, y, w, h))
# 将符合的轮廓从左到右排序
locs = sorted(locs, key=lambda x:x[0])
output = []
# 遍历每一个轮廓中的数字
for (i, (gX, gY, gW, gH)) in enumerate(locs):
# initialize the list of group digits
groupOutput = []
# 根据坐标提取每一个组
group = gray[gY - 5:gY + gH + 5, gX - 5:gX + gW + 5]
cv_show1('group',group)
# 预处理
group = cv2.threshold(group, 0, 255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv_show1('group',group)
# 计算每一组的轮廓
group_,digitCnts,hierarchy = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
digitCnts = contours.sort_contours(digitCnts,
method="left-to-right")[0]
# 计算每一组中的每一个数值
for c in digitCnts:
# 找到当前数值的轮廓,resize成合适的的大小
(x, y, w, h) = cv2.boundingRect(c)
roi = group[y:y + h, x:x + w]
roi = cv2.resize(roi, (57, 88))
cv_show1('roi',roi)
# 计算匹配得分
scores = []
# 在模板中计算每一个得分
for (digit, digitROI) in digits.items():
# 模板匹配
result = cv2.matchTemplate(roi, digitROI,
cv2.TM_CCOEFF)
(_, score, _, _) = cv2.minMaxLoc(result)
scores.append(score)
# 得到最合适的数字
groupOutput.append(str(np.argmax(scores)))
# 画出来
cv2.rectangle(image, (gX - 5, gY - 5),
(gX + gW + 5, gY + gH + 5), (0, 0, 255), 1)
cv2.putText(image, "".join(groupOutput), (gX, gY - 15),
cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 0, 255), 2)
# 得到结果
output.extend(groupOutput)
























# 打印结果
print("Credit Card Type: {}".format(FIRST_NUMBER[output[0]]))
print("Credit Card #: {}".format("".join(output)))
cv_show("Image", image)
#cv2.waitKey(0)
Credit Card Type: Visa
Credit Card #: 4000123456789010

参考
边栏推荐
- 博文推荐 | 深入研究 Pulsar 中的消息分块
- 这3款在线PS工具,得试试
- TypeScript:const
- [Verilog quick start of Niuke question series] ~ use functions to realize data size conversion
- solidty-基础篇-结构体和数组,私有 / 公共函数,函数的返回值和修饰符,事件
- 竣达技术丨多台精密空调微信云监控方案
- Some thoughts on software testing
- [零基础学IoT Pwn] 复现Netgear WNAP320 RCE
- Is it reasonable and safe for securities companies to open accounts for 10000 free securities? How to say
- Research Report on development trend and competitive strategy of global 4-aminodiphenylamine industry
猜你喜欢

Build your own website (14)

The first word of JVM -- detailed introduction to JVM and analysis of runtime data area

Sqlachemy common operations

【牛客网刷题系列 之 Verilog快速入门】~ 多功能数据处理器、求两个数的差值、使用generate…for语句简化代码、使用子模块实现三输入数的大小比较
![[leetcode 324] swing sorting II thinking + sorting](/img/cb/26d89e1a1f548b75a5ef9f29eebeee.png)
[leetcode 324] swing sorting II thinking + sorting

竣达技术丨多台精密空调微信云监控方案

JVM第一话 -- JVM入门详解以及运行时数据区分析
![After twists and turns, I finally found the method of SRC vulnerability mining [recommended collection]](/img/ac/ab6053e6ea449beedf434d4cf07dbb.png)
After twists and turns, I finally found the method of SRC vulnerability mining [recommended collection]
![[leetcode 324] 摆动排序 II 思维+排序](/img/cb/26d89e1a1f548b75a5ef9f29eebeee.png)
[leetcode 324] 摆动排序 II 思维+排序

户外LED显示屏应该考虑哪些问题?
随机推荐
这3款在线PS工具,得试试
JVM第二话 -- JVM内存模型以及垃圾回收
Tensorflow 2. X realizes iris classification
JVM第一话 -- JVM入门详解以及运行时数据区分析
MongoDB第二话 -- MongoDB高可用集群实现
建立自己的网站(14)
Redis installation and setting up SSDB master-slave environment under Ubuntu 14.04
Generate random numbers (4-bit, 6-bit)
What are the books that have greatly improved the thinking and ability of programming?
Filter &(登录拦截)
从零开发小程序和公众号【第三期】
[dynamic programming] interval dp:p1005 matrix retrieval
【14. 区间和(离散化)】
Research Report on development trend and competitive strategy of global 4-aminodiphenylamine industry
定了!2022海南二级造价工程师考试时间确定!报名通道已开启!
How to view the state-owned enterprises have unloaded Microsoft office and switched to Kingsoft WPS?
【15. 区间合并】
适合没口才的人做,加入中视频伙伴计划收益是真香,一个视频拿3份收益
Solid smart contract development - easy to get started
期末琐碎知识点再整理