当前位置:网站首页>20211108 微分跟踪器
20211108 微分跟踪器
2022-06-13 08:55:00 【我起个什么名字呢】
微分跟踪器
引理 1. 设 z ( t ) z(t) z(t) 是 [ 0 , ∞ ) [0, \infty) [0,∞) 上的连续函数, 且 lim t → ∞ z ( t ) = 0 , \lim _{t \rightarrow \infty} z(t)=0, t→∞limz(t)=0,若令 x ( t ) = z ( R t ) , R > 0 x(t)=z(Rt), R>0 x(t)=z(Rt),R>0则对任意给定的 T > 0 T>0 T>0, 有 lim R → ∞ ∫ 0 T ∣ x ( t ) ∣ d t = 0. \lim _{R \rightarrow \infty} \int_{0}^{T}|x(t)| dt=0. R→∞lim∫0T∣x(t)∣dt=0.
证明:
lim R → ∞ ∫ 0 T ∣ x ( t ) ∣ d t = lim R → ∞ ∫ 0 T ∣ z ( R t ) ∣ d t = lim R → ∞ 1 R ∫ 0 T ∣ z ( R t ) ∣ d R t = lim R → ∞ 1 R ∫ 0 R T ∣ z ( t ) ∣ d t = 0. \lim _{R \rightarrow \infty} \int_{0}^{T}|x(t)| dt =\lim _{R \rightarrow \infty} \int_{0}^{T}|z(Rt)| dt =\lim _{R \rightarrow \infty} \frac{1}{R} \int_{0}^{T}|z(Rt)| d{Rt} =\lim _{R \rightarrow \infty} \frac{1}{R} \int_{0}^{RT}|z(t)| d{t}=0. R→∞lim∫0T∣x(t)∣dt=R→∞lim∫0T∣z(Rt)∣dt=R→∞limR1∫0T∣z(Rt)∣dRt=R→∞limR1∫0RT∣z(t)∣dt=0.
根据引理 1 及变换:
{ s = t R x 1 ( s ) = z 1 ( t ) + c x 2 ( s ) = R z 2 ( t ) \left\{\begin{array}{l} s=\frac{t}{R} \\ x_{1}(s)=z_{1}(t)+c \\ x_{2}(s)=R z_{2}(t) \end{array}\right. ⎩⎨⎧s=Rtx1(s)=z1(t)+cx2(s)=Rz2(t)
引理 2. 若系统 { z ˙ 1 = z 2 , z ˙ 2 = f ( z 1 , z 2 ) \left\{\begin{array}{l} \dot{ {z}}_{1}=z_{2}, \\ \dot{z}_{2}=f\left(z_{1}, z_{2}\right) \end{array}\right. { z˙1=z2,z˙2=f(z1,z2)的任意解满足: z 1 ( t ) → 0 , z 2 ( t ) → 0 ( t → ∞ ) z_{1}(t) \rightarrow 0, z_{2}(t) \rightarrow 0 (t \rightarrow \infty) z1(t)→0,z2(t)→0(t→∞), 则对任意固定的常数 c c c, 系统 { x ˙ 1 = x 2 x ˙ 2 = R 2 f ( x 1 − c , x 2 R ) \left\{\begin{array}{l} \dot{x}_{1}=x_{2} \\ \dot{x}_{2}=R^{2} f\left(x_{1}-c, \frac{x_{2}}{R}\right) \end{array}\right. { x˙1=x2x˙2=R2f(x1−c,Rx2)的解 x 1 ( t ) x_{1}(t) x1(t) 对于任意 T > 0 T>0 T>0,有
lim R → ∞ ∫ 0 T ∣ x 1 ( t ) − c ∣ d t = 0 \lim _{R \rightarrow \infty} \int_{0}^{T}\left|x_{1}(t)-c\right| d t=0 R→∞lim∫0T∣x1(t)−c∣dt=0
证明:
d x 1 ( s ) d s = d z 1 ( t ) d t R = R z ˙ 1 ( t ) = R z 2 ( t ) = x 2 ( s ) \frac{\mathrm{d} x_1(s)}{\mathrm{d} s} = \frac{\mathrm{d} z_1(t)}{\mathrm{d} \frac{t}{R}}=R\dot z_1(t)=R z_2(t) = x_2(s) dsdx1(s)=dRtdz1(t)=Rz˙1(t)=Rz2(t)=x2(s)
d x 2 ( s ) d s = R d z 2 ( t ) d t R = R 2 z ˙ 2 ( t ) = R 2 f ( z 1 , z 2 ) = R 2 f ( x 1 ( s ) − c , x 2 ( s ) R ) \frac{\mathrm{d} x_2(s)}{\mathrm{d} s} = \frac{R\mathrm{d} z_2(t)}{\mathrm{d} \frac{t}{R}}=R^2\dot z_2(t) =R^2 f\left(z_{1}, z_{2}\right) = R^2 f\left(x_{1}(s)-c, \frac{x_{2}(s)}{R}\right) dsdx2(s)=dRtRdz2(t)=R2z˙2(t)=R2f(z1,z2)=R2f(x1(s)−c,Rx2(s))
因此,系统等价变换成立。
同时,因为有 z 1 ( t ) → 0 当 t → ∞ z_1(t) \rightarrow 0 当 t \rightarrow \infty z1(t)→0当t→∞,且 z 1 ( t ) z_1(t) z1(t)可导
lim R → ∞ ∫ 0 T ∣ z 1 ( t ) ∣ d t = 0 \lim _{R \rightarrow \infty} \int_{0}^{T}\left|z_{1}(t)\right| d t=0 R→∞lim∫0T∣z1(t)∣dt=0
即可得
lim R → ∞ ∫ 0 T ∣ x 1 ( t ) − c ∣ d t = 0 \lim _{R \rightarrow \infty} \int_{0}^{T}\left|x_{1}(t)-c\right| d t=0 R→∞lim∫0T∣x1(t)−c∣dt=0
参考文献:https://wenku.baidu.com/view/e1ed0cf8aef8941ea76e05e9.html
边栏推荐
- À propos des principes de chiffrement et de décryptage RSA
- 0. Quelques doutes au sujet de SolidWorks
- You don't know the usage of stringstream
- 顺时针打印个数组
- Calculation method of paging
- GBase 8a磁盤問題及處理
- 教程篇(5.0) 03. 安全策略 * FortiEDR * Fortinet 网络安全专家 NSE 5
- output. Interpretation of topk() function
- 0. some doubts about learning SolidWorks for the first time
- JS ask for the day of the year
猜你喜欢

torch. How to calculate addmm (m, mat1, mat2)

如何成为白帽子黑客?我建议你从这几个阶段开始学习

Knowledge points related to system architecture 1

教程篇(5.0) 04. Fortint云服务和脚本 * FortiEDR * Fortinet 网络安全专家 NSE 5

Cmake Learning Series I

transforms. ColorJitter(0.3, 0, 0, 0)

【安全】零基础如何从0到1逆袭成为安全工程师

Loss outputs Nan for the Nan model

Cesium displays a pop-up box at the specified position and moves with the map

【安全】零基礎如何從0到1逆襲成為安全工程師
随机推荐
Uni app essay
Vscode double shortcut keys up, down, left and right
How does jupyter notebook directly output the values of multiple variables after running?
On the use of visual studio
Animation through svg
教程篇(5.0) 01. 产品简介及安装 * FortiEDR * Fortinet 网络安全专家 NSE 5
2、 Three ways to write JS code
Pytorch same structure different parameter name model loading weight
H5 mobile terminal adaptation
消息中间件
VBA format word (page, paragraph, table, picture)
如何成为白帽子黑客?我建议你从这几个阶段开始学习
Loss outputs Nan for the Nan model
Gbase 8A v95 vs v86 compression strategy analogy
GBase 常见网络问题及排查方法
网络安全漏洞分析之重定向漏洞分析
Review one flex knowledge point every day
8、 JS data type conversion
You don't know the usage of stringstream
redis