当前位置:网站首页>20211108 微分跟踪器
20211108 微分跟踪器
2022-06-13 08:55:00 【我起个什么名字呢】
微分跟踪器
引理 1. 设 z ( t ) z(t) z(t) 是 [ 0 , ∞ ) [0, \infty) [0,∞) 上的连续函数, 且 lim t → ∞ z ( t ) = 0 , \lim _{t \rightarrow \infty} z(t)=0, t→∞limz(t)=0,若令 x ( t ) = z ( R t ) , R > 0 x(t)=z(Rt), R>0 x(t)=z(Rt),R>0则对任意给定的 T > 0 T>0 T>0, 有 lim R → ∞ ∫ 0 T ∣ x ( t ) ∣ d t = 0. \lim _{R \rightarrow \infty} \int_{0}^{T}|x(t)| dt=0. R→∞lim∫0T∣x(t)∣dt=0.
证明:
lim R → ∞ ∫ 0 T ∣ x ( t ) ∣ d t = lim R → ∞ ∫ 0 T ∣ z ( R t ) ∣ d t = lim R → ∞ 1 R ∫ 0 T ∣ z ( R t ) ∣ d R t = lim R → ∞ 1 R ∫ 0 R T ∣ z ( t ) ∣ d t = 0. \lim _{R \rightarrow \infty} \int_{0}^{T}|x(t)| dt =\lim _{R \rightarrow \infty} \int_{0}^{T}|z(Rt)| dt =\lim _{R \rightarrow \infty} \frac{1}{R} \int_{0}^{T}|z(Rt)| d{Rt} =\lim _{R \rightarrow \infty} \frac{1}{R} \int_{0}^{RT}|z(t)| d{t}=0. R→∞lim∫0T∣x(t)∣dt=R→∞lim∫0T∣z(Rt)∣dt=R→∞limR1∫0T∣z(Rt)∣dRt=R→∞limR1∫0RT∣z(t)∣dt=0.
根据引理 1 及变换:
{ s = t R x 1 ( s ) = z 1 ( t ) + c x 2 ( s ) = R z 2 ( t ) \left\{\begin{array}{l} s=\frac{t}{R} \\ x_{1}(s)=z_{1}(t)+c \\ x_{2}(s)=R z_{2}(t) \end{array}\right. ⎩⎨⎧s=Rtx1(s)=z1(t)+cx2(s)=Rz2(t)
引理 2. 若系统 { z ˙ 1 = z 2 , z ˙ 2 = f ( z 1 , z 2 ) \left\{\begin{array}{l} \dot{ {z}}_{1}=z_{2}, \\ \dot{z}_{2}=f\left(z_{1}, z_{2}\right) \end{array}\right. { z˙1=z2,z˙2=f(z1,z2)的任意解满足: z 1 ( t ) → 0 , z 2 ( t ) → 0 ( t → ∞ ) z_{1}(t) \rightarrow 0, z_{2}(t) \rightarrow 0 (t \rightarrow \infty) z1(t)→0,z2(t)→0(t→∞), 则对任意固定的常数 c c c, 系统 { x ˙ 1 = x 2 x ˙ 2 = R 2 f ( x 1 − c , x 2 R ) \left\{\begin{array}{l} \dot{x}_{1}=x_{2} \\ \dot{x}_{2}=R^{2} f\left(x_{1}-c, \frac{x_{2}}{R}\right) \end{array}\right. { x˙1=x2x˙2=R2f(x1−c,Rx2)的解 x 1 ( t ) x_{1}(t) x1(t) 对于任意 T > 0 T>0 T>0,有
lim R → ∞ ∫ 0 T ∣ x 1 ( t ) − c ∣ d t = 0 \lim _{R \rightarrow \infty} \int_{0}^{T}\left|x_{1}(t)-c\right| d t=0 R→∞lim∫0T∣x1(t)−c∣dt=0
证明:
d x 1 ( s ) d s = d z 1 ( t ) d t R = R z ˙ 1 ( t ) = R z 2 ( t ) = x 2 ( s ) \frac{\mathrm{d} x_1(s)}{\mathrm{d} s} = \frac{\mathrm{d} z_1(t)}{\mathrm{d} \frac{t}{R}}=R\dot z_1(t)=R z_2(t) = x_2(s) dsdx1(s)=dRtdz1(t)=Rz˙1(t)=Rz2(t)=x2(s)
d x 2 ( s ) d s = R d z 2 ( t ) d t R = R 2 z ˙ 2 ( t ) = R 2 f ( z 1 , z 2 ) = R 2 f ( x 1 ( s ) − c , x 2 ( s ) R ) \frac{\mathrm{d} x_2(s)}{\mathrm{d} s} = \frac{R\mathrm{d} z_2(t)}{\mathrm{d} \frac{t}{R}}=R^2\dot z_2(t) =R^2 f\left(z_{1}, z_{2}\right) = R^2 f\left(x_{1}(s)-c, \frac{x_{2}(s)}{R}\right) dsdx2(s)=dRtRdz2(t)=R2z˙2(t)=R2f(z1,z2)=R2f(x1(s)−c,Rx2(s))
因此,系统等价变换成立。
同时,因为有 z 1 ( t ) → 0 当 t → ∞ z_1(t) \rightarrow 0 当 t \rightarrow \infty z1(t)→0当t→∞,且 z 1 ( t ) z_1(t) z1(t)可导
lim R → ∞ ∫ 0 T ∣ z 1 ( t ) ∣ d t = 0 \lim _{R \rightarrow \infty} \int_{0}^{T}\left|z_{1}(t)\right| d t=0 R→∞lim∫0T∣z1(t)∣dt=0
即可得
lim R → ∞ ∫ 0 T ∣ x 1 ( t ) − c ∣ d t = 0 \lim _{R \rightarrow \infty} \int_{0}^{T}\left|x_{1}(t)-c\right| d t=0 R→∞lim∫0T∣x1(t)−c∣dt=0
参考文献:https://wenku.baidu.com/view/e1ed0cf8aef8941ea76e05e9.html
边栏推荐
- MySQL startup error: innodb: operating system error number 13 in a file operation
- MySQL 8.0 modifying SQL_ mode=only_ full_ group_ by
- How to become a white hat hacker? I suggest you start from these stages
- 13.inline,const,mutable,this,static
- 「解读」华为云桌面说“流畅”的时候,究竟在说什么?
- 【安全】零基础如何从0到1逆袭成为安全工程师
- Pytorch model tuning - only some layers of the pre training model are loaded
- 6、 JS naming rules and specifications
- Pop component submission success failure animation
- 顺时针打印个数组
猜你喜欢

4、 Js-es5-i / O

0.一些自己初學Solidworks的疑惑

File upload JS

【安全】零基礎如何從0到1逆襲成為安全工程師

0.一些自己初学Solidworks的疑惑

【网络安全渗透】如果你还不懂CSRF?这一篇让你彻底掌握

Collection of garbled code problems in idea development environment

Animation through svg

torch. How to calculate addmm (m, mat1, mat2)

4. Relationship selector (parent-child relationship, ancestor offspring relationship, brother relationship)
随机推荐
A very detailed blog about the implementation of bilinear interpolation by opencv
GBase 8a磁盤問題及處理
Gbase 8A v95 vs v86 compression strategy analogy
[security] how to counter attack from 0 to 1 to become a security engineer with zero Foundation
1、 JS introduction
1. preliminary understanding of Express
Brief description of port, domain communication port and domain service
Yarn package management tool
Can I open an account for the reverse repurchase of treasury bonds? Can I directly open the security of securities companies on the app for the reverse repurchase of treasury bonds? How can I open an
「解读」华为云桌面说“流畅”的时候,究竟在说什么?
DIY UAV (anonymous controller p2+f330 rack)
The 360 mobile assistant on Huawei maimang 7 cannot be uninstalled
网络安全漏洞分析之重定向漏洞分析
How excel adds hyperlinks to some text in a cell
1. Learning sequence of SolidWorks modules
0. Quelques doutes au sujet de SolidWorks
2021-04-16
Use of addeventlistener in JS
Review one flex knowledge point every day
Uni app essay