当前位置:网站首页>20211108 微分跟踪器
20211108 微分跟踪器
2022-06-13 08:55:00 【我起个什么名字呢】
微分跟踪器
引理 1. 设 z ( t ) z(t) z(t) 是 [ 0 , ∞ ) [0, \infty) [0,∞) 上的连续函数, 且 lim t → ∞ z ( t ) = 0 , \lim _{t \rightarrow \infty} z(t)=0, t→∞limz(t)=0,若令 x ( t ) = z ( R t ) , R > 0 x(t)=z(Rt), R>0 x(t)=z(Rt),R>0则对任意给定的 T > 0 T>0 T>0, 有 lim R → ∞ ∫ 0 T ∣ x ( t ) ∣ d t = 0. \lim _{R \rightarrow \infty} \int_{0}^{T}|x(t)| dt=0. R→∞lim∫0T∣x(t)∣dt=0.
证明:
lim R → ∞ ∫ 0 T ∣ x ( t ) ∣ d t = lim R → ∞ ∫ 0 T ∣ z ( R t ) ∣ d t = lim R → ∞ 1 R ∫ 0 T ∣ z ( R t ) ∣ d R t = lim R → ∞ 1 R ∫ 0 R T ∣ z ( t ) ∣ d t = 0. \lim _{R \rightarrow \infty} \int_{0}^{T}|x(t)| dt =\lim _{R \rightarrow \infty} \int_{0}^{T}|z(Rt)| dt =\lim _{R \rightarrow \infty} \frac{1}{R} \int_{0}^{T}|z(Rt)| d{Rt} =\lim _{R \rightarrow \infty} \frac{1}{R} \int_{0}^{RT}|z(t)| d{t}=0. R→∞lim∫0T∣x(t)∣dt=R→∞lim∫0T∣z(Rt)∣dt=R→∞limR1∫0T∣z(Rt)∣dRt=R→∞limR1∫0RT∣z(t)∣dt=0.
根据引理 1 及变换:
{ s = t R x 1 ( s ) = z 1 ( t ) + c x 2 ( s ) = R z 2 ( t ) \left\{\begin{array}{l} s=\frac{t}{R} \\ x_{1}(s)=z_{1}(t)+c \\ x_{2}(s)=R z_{2}(t) \end{array}\right. ⎩⎨⎧s=Rtx1(s)=z1(t)+cx2(s)=Rz2(t)
引理 2. 若系统 { z ˙ 1 = z 2 , z ˙ 2 = f ( z 1 , z 2 ) \left\{\begin{array}{l} \dot{ {z}}_{1}=z_{2}, \\ \dot{z}_{2}=f\left(z_{1}, z_{2}\right) \end{array}\right. { z˙1=z2,z˙2=f(z1,z2)的任意解满足: z 1 ( t ) → 0 , z 2 ( t ) → 0 ( t → ∞ ) z_{1}(t) \rightarrow 0, z_{2}(t) \rightarrow 0 (t \rightarrow \infty) z1(t)→0,z2(t)→0(t→∞), 则对任意固定的常数 c c c, 系统 { x ˙ 1 = x 2 x ˙ 2 = R 2 f ( x 1 − c , x 2 R ) \left\{\begin{array}{l} \dot{x}_{1}=x_{2} \\ \dot{x}_{2}=R^{2} f\left(x_{1}-c, \frac{x_{2}}{R}\right) \end{array}\right. { x˙1=x2x˙2=R2f(x1−c,Rx2)的解 x 1 ( t ) x_{1}(t) x1(t) 对于任意 T > 0 T>0 T>0,有
lim R → ∞ ∫ 0 T ∣ x 1 ( t ) − c ∣ d t = 0 \lim _{R \rightarrow \infty} \int_{0}^{T}\left|x_{1}(t)-c\right| d t=0 R→∞lim∫0T∣x1(t)−c∣dt=0
证明:
d x 1 ( s ) d s = d z 1 ( t ) d t R = R z ˙ 1 ( t ) = R z 2 ( t ) = x 2 ( s ) \frac{\mathrm{d} x_1(s)}{\mathrm{d} s} = \frac{\mathrm{d} z_1(t)}{\mathrm{d} \frac{t}{R}}=R\dot z_1(t)=R z_2(t) = x_2(s) dsdx1(s)=dRtdz1(t)=Rz˙1(t)=Rz2(t)=x2(s)
d x 2 ( s ) d s = R d z 2 ( t ) d t R = R 2 z ˙ 2 ( t ) = R 2 f ( z 1 , z 2 ) = R 2 f ( x 1 ( s ) − c , x 2 ( s ) R ) \frac{\mathrm{d} x_2(s)}{\mathrm{d} s} = \frac{R\mathrm{d} z_2(t)}{\mathrm{d} \frac{t}{R}}=R^2\dot z_2(t) =R^2 f\left(z_{1}, z_{2}\right) = R^2 f\left(x_{1}(s)-c, \frac{x_{2}(s)}{R}\right) dsdx2(s)=dRtRdz2(t)=R2z˙2(t)=R2f(z1,z2)=R2f(x1(s)−c,Rx2(s))
因此,系统等价变换成立。
同时,因为有 z 1 ( t ) → 0 当 t → ∞ z_1(t) \rightarrow 0 当 t \rightarrow \infty z1(t)→0当t→∞,且 z 1 ( t ) z_1(t) z1(t)可导
lim R → ∞ ∫ 0 T ∣ z 1 ( t ) ∣ d t = 0 \lim _{R \rightarrow \infty} \int_{0}^{T}\left|z_{1}(t)\right| d t=0 R→∞lim∫0T∣z1(t)∣dt=0
即可得
lim R → ∞ ∫ 0 T ∣ x 1 ( t ) − c ∣ d t = 0 \lim _{R \rightarrow \infty} \int_{0}^{T}\left|x_{1}(t)-c\right| d t=0 R→∞lim∫0T∣x1(t)−c∣dt=0
参考文献:https://wenku.baidu.com/view/e1ed0cf8aef8941ea76e05e9.html
边栏推荐
- 教程篇(5.0) 04. Fortint云服务和脚本 * FortiEDR * Fortinet 网络安全专家 NSE 5
- VBA format word (page, paragraph, table, picture)
- GBase 常见网络问题及排查方法
- How to become a white hat hacker? I suggest you start from these stages
- JS format file unit display
- Differences and uses among cookies, localstorage, sessionstorage, and application caching
- [security] how to counter attack from 0 to 1 to become a security engineer with zero Foundation
- À propos des principes de chiffrement et de décryptage RSA
- [QNX hypervisor 2.2 user manual] 4.5.1 build QNX guest
- JS gets the first month of the year, the second month to the last month, and the first day to the last day
猜你喜欢
Sky background map, navigation page lovefanfan top
How does jupyter notebook directly output the values of multiple variables after running?
2020-12-28
How many TCP connections can a machine create at most?
Animation through svg
【安全】零基礎如何從0到1逆襲成為安全工程師
CentOS installing MySQL and setting up remote access
Knowledge points related to system architecture 1
Basic use of cesium, including loading images, terrain, models, vector data, etc
Cesium achieves sunny, rainy, foggy, snowy and other effects
随机推荐
2021-04-16
15. copy constructor
2020-12-28
Screenshot of cesium implementation scenario
0.一些自己初學Solidworks的疑惑
Is it safe to open an account online? Can a novice open an account?
教程篇(5.0) 04. Fortint云服务和脚本 * FortiEDR * Fortinet 网络安全专家 NSE 5
CentOS installing MySQL and setting up remote access
Number of parameters of pytorch statistical model
Knowledge points related to system architecture 3
Explanation of JS event loop mechanism and asynchronous tasks
pytorch统计模型的参数个数
Undefined and null in JS
Basic use of cesium, including loading images, terrain, models, vector data, etc
Redirect vulnerability analysis of network security vulnerability analysis
Replace jade engine with EJS
Differences and uses among cookies, localstorage, sessionstorage, and application caching
Print an array clockwise
4、 Js-es5-i / O
Map 23 summary