当前位置:网站首页>Day 15. Deep learning radiomics can predict axillary lymphnode status in early-stage breast cancer
Day 15. Deep learning radiomics can predict axillary lymphnode status in early-stage breast cancer
2022-07-27 05:12:00 【无知的研究生】
Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer
深度学习预测早期乳腺癌的腋窝淋巴状态
Accurate identification of axillary lymph node (ALN) involvement in patients with early-stage breast cancer is important for determining appropriate axillary treatment options and therefore avoiding unnecessary axillary surgery and complications. Here, we report deep learning radiomics (DLR) of conventional ultrasound and shear wave elastography of breast cancer for predicting ALN status preoperatively in patients with early-stage breast cancer. Clinical parameter combined DLR yields the best diagnostic performance in predicting ALN status between disease-free axilla and any axillary metastasis with areas under the receiver operating characteristic curve (AUC) of 0.902 (95% confidence interval [CI]: 0.843, 0.961)in the test cohort. This clinical parameter combined DLR can also discriminate between low and heavy metastatic burden of axillary disease with AUC of 0.905 (95% CI: 0.814, 0.996) in the test cohort. Our study offers a noninvasive imaging biomarker to predict the metastatic extent of ALN for patients with early-stage breast cancer.
准确识别早期乳腺癌患者腋窝淋巴结(ALN)的情况对于确定合适的腋窝治疗方案、避免不必要的腋窝手术和并发症具有重要意义。在这里,我们报告了乳腺癌常规超声和横波弹性成像的深度学习放射组学(DLR)对早期乳腺癌患者术前ALN状态的预测。临床参数结合DLR在预测无病腋窝和腋窝转移之间的ALN状态方面具有最佳的诊断性能,在试验队列中,受试者操作特征曲线(AUC)下的面积为0.902(95%置信区间[CI]:0.843,0.961)。这个临床参数结合DLR也可以区分腋窝疾病的低转移负荷和重转移负荷,AUC为0.905(95%CI:0.814,0.996)。我们的研究提供了一种无创性的影像生物标记物来预测早期乳腺癌患者ALN的转移范围。
边栏推荐
- inno setup 打包 jar + h5 + mysql + redis 成 exe
- GBASE 8C——SQL参考6 sql语法(15)
- Seektiger's okaleido has a big move. Will the STI of ecological pass break out?
- 常用adb命令汇总 性能优化
- 使用Docker部署Redis进行高可用主从复制
- GBASE 8C——SQL参考6 sql语法(7)
- Docker部署redis单机版本 - 修改redis密码和持久化方式
- vim编辑器全部删除文件内容
- GBASE 8C——SQL参考6 sql语法(10)
- GBASE 8C——SQL参考4 字符集支持
猜你喜欢

Choose a qualified futures company to open an account

Amazon evaluation autotrophic number, how to carry out systematic learning?

Mysql分组后时并行统计数量

Count the quantity in parallel after MySQL grouping

Integration and extension of robot programming and interdisciplinary

哪个期货公司手续费低高交返?

选择国企背景的期货公司开户

How can seektiger go against the cold air in the market?

Do you really know session and cookies?

你连简单的功能测试都做不好,你拿什么来跟我谈涨薪?
随机推荐
解决MySQL JDBC数据批量插入慢的问题
Seektiger will launch STI fusion mining function to obtain Oka pass
The NFT market pattern has not changed. Can okaleido set off a new round of waves?
How to not overwrite the target source data when dBSwitch data migrates data increments
GBASE 8C——SQL参考 5 全文检索
Graph node deployment
GBASE 8C——SQL参考6 sql语法(6)
MySQL索引优化相关原理
GBASE 8C——SQL参考6 sql语法(12)
GBASE 8C——SQL参考6 sql语法(4)
亚马逊测评自养号,如何进行系统性的学习?
选择正规的资质好的期货公司开户
GBASE 8C——SQL参考6 sql语法(14)
定点一键查询GUI编程的设计与开发
Integration and extension of robot programming and interdisciplinary
Sealem Finance - a new decentralized financial platform based on Web3
Web3 traffic aggregation platform starfish OS interprets the "p2e" ecosystem of real business
2020年PHP中级面试知识点及答案
GBASE 8C——SQL参考6 sql语法(1)
How to choose a good futures company for futures account opening?