当前位置:网站首页>LeetCode 1774. 最接近目标价格的甜点成本 每日一题

LeetCode 1774. 最接近目标价格的甜点成本 每日一题

2022-07-07 15:32:00 @小红花

问题描述

你打算做甜点,现在需要购买配料。目前共有 n 种冰激凌基料和 m 种配料可供选购。而制作甜点需要遵循以下几条规则:

必须选择 一种 冰激凌基料。
可以添加 一种或多种 配料,也可以不添加任何配料。
每种类型的配料 最多两份 。
给你以下三个输入:

baseCosts ,一个长度为 n 的整数数组,其中每个 baseCosts[i] 表示第 i 种冰激凌基料的价格。
toppingCosts,一个长度为 m 的整数数组,其中每个 toppingCosts[i] 表示 一份 第 i 种冰激凌配料的价格。
target ,一个整数,表示你制作甜点的目标价格。
你希望自己做的甜点总成本尽可能接近目标价格 target 。

返回最接近 target 的甜点成本。如果有多种方案,返回 成本相对较低 的一种。

示例 1:

输入:baseCosts = [1,7], toppingCosts = [3,4], target = 10
输出:10
解释:考虑下面的方案组合(所有下标均从 0 开始):
- 选择 1 号基料:成本 7
- 选择 1 份 0 号配料:成本 1 x 3 = 3
- 选择 0 份 1 号配料:成本 0 x 4 = 0
总成本:7 + 3 + 0 = 10 。
示例 2:

输入:baseCosts = [2,3], toppingCosts = [4,5,100], target = 18
输出:17
解释:考虑下面的方案组合(所有下标均从 0 开始):
- 选择 1 号基料:成本 3
- 选择 1 份 0 号配料:成本 1 x 4 = 4
- 选择 2 份 1 号配料:成本 2 x 5 = 10
- 选择 0 份 2 号配料:成本 0 x 100 = 0
总成本:3 + 4 + 10 + 0 = 17 。不存在总成本为 18 的甜点制作方案。
示例 3:

输入:baseCosts = [3,10], toppingCosts = [2,5], target = 9
输出:8
解释:可以制作总成本为 8 和 10 的甜点。返回 8 ,因为这是成本更低的方案。
示例 4:

输入:baseCosts = [10], toppingCosts = [1], target = 1
输出:10
解释:注意,你可以选择不添加任何配料,但你必须选择一种基料。
 

提示:

n == baseCosts.length
m == toppingCosts.length
1 <= n, m <= 10
1 <= baseCosts[i], toppingCosts[i] <= 104
1 <= target <= 104

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/closest-dessert-cost
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

Java

class Solution {
    int ans = Integer.MAX_VALUE;
    public int closestCost(int[] baseCosts, int[] toppingCosts, int target) {
        int n = baseCosts.length;
        for(int i = 0;i < n;i++){
            dfs(toppingCosts,0,baseCosts[i],target);
        }
        return ans;
    }
    public void dfs(int[] toppingCosts,int index,int sum,int target){

        if(Math.abs(sum - target) < Math.abs(ans - target)) ans = sum;
        else if(Math.abs(sum - target) == Math.abs(ans - target)) ans = ans < target ? ans : sum;
        
        //更新结果后在判断
        if(index == toppingCosts.length || sum >= target) return;

        //加配料
        for(int i = 0;i < 3;i++){
            dfs(toppingCosts,index + 1,sum + toppingCosts[index] * i,target);
        }
    }
}

 

原网站

版权声明
本文为[@小红花]所创,转载请带上原文链接,感谢
https://blog.csdn.net/lishifu_/article/details/125223779