当前位置:网站首页>numpy.linspace()
numpy.linspace()
2022-06-24 09:40:00 【Wanderer001】
参考 numpy.linspace - 云+社区 - 腾讯云
numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0)[source]
Return evenly spaced numbers over a specified interval.
Returns num evenly spaced samples, calculated over the interval [start, stop].
The endpoint of the interval can optionally be excluded.
Changed in version 1.16.0: Non-scalar start and stop are now supported.
| Parameters: | start : array_like The starting value of the sequence. stop : array_like The end value of the sequence, unless endpoint is set to False. In that case, the sequence consists of all but the last of num : int, optional Number of samples to generate. Default is 50. Must be non-negative. endpoint : bool, optional If True, stop is the last sample. Otherwise, it is not included. Default is True. retstep : bool, optional If True, return (samples, step), where step is the spacing between samples. dtype : dtype, optional The type of the output array. If dtype is not given, infer the data type from the other input arguments. New in version 1.9.0. axis : int, optional The axis in the result to store the samples. Relevant only if start or stop are array-like. By default (0), the samples will be along a new axis inserted at the beginning. Use -1 to get an axis at the end. New in version 1.16.0. |
|---|---|
| Returns: | samples : ndarray There are num equally spaced samples in the closed interval step : float, optional Only returned if retstep is True Size of spacing between samples. |
See also
Similar to linspace, but uses a step size (instead of the number of samples).
Similar to linspace, but with numbers spaced evenly on a log scale (a geometric progression).
Similar to geomspace, but with the end points specified as logarithms.
Examples
>>> np.linspace(2.0, 3.0, num=5)
array([2. , 2.25, 2.5 , 2.75, 3. ])
>>> np.linspace(2.0, 3.0, num=5, endpoint=False)
array([2. , 2.2, 2.4, 2.6, 2.8])
>>> np.linspace(2.0, 3.0, num=5, retstep=True)
(array([2. , 2.25, 2.5 , 2.75, 3. ]), 0.25)Graphical illustration:
>>> import matplotlib.pyplot as plt
>>> N = 8
>>> y = np.zeros(N)
>>> x1 = np.linspace(0, 10, N, endpoint=True)
>>> x2 = np.linspace(0, 10, N, endpoint=False)
>>> plt.plot(x1, y, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.plot(x2, y + 0.5, 'o')
[<matplotlib.lines.Line2D object at 0x...>]
>>> plt.ylim([-0.5, 1])
(-0.5, 1)
>>> plt.show() 
边栏推荐
猜你喜欢

Three ways to use applicationcontextinitializer

CICFlowMeter源码分析以及为满足需求而进行的修改

Thinkphp5 multi language switching project practice

Go language development environment setup +goland configuration under the latest Windows

How to solve multi-channel customer communication problems in independent stations? This cross-border e-commerce plug-in must be known!

Binary tree part I

顶刊TPAMI 2022!基于不同数据模态的行为识别:最新综述

Geogebra instance clock

How to standardize data center infrastructure management process

SQL Server AVG函数取整问题
随机推荐
Distributed | how to make "secret calls" with dble
SVG+js拖拽滑块圆形进度条
一群骷髅在飞canvas动画js特效
被困英西中学的师生安全和食物有保障
机器学习——感知机及K近邻
How does home office manage the data center network infrastructure?
买的长期理财产品,可以转短吗?
有关二叉树 的基本操作
GeoGebra 实例 时钟
Basic operations on binary tree
机器学习——主成分分析(PCA)
分布式 | 如何与 DBLE 进行“秘密通话”
SQL Sever中的窗口函数row_number()rank()dense_rank()
形状变化loader加载jsjs特效代码
canvas无限扫描js特效代码
el-table表格的拖拽 sortablejs
Recursive traversal of 414 binary tree
SQL sever基本数据类型详解
如何管理海量的网络基础设施?
LeetCode: 240. Search 2D matrix II