当前位置:网站首页>深度学习框架pytorch快速开发与实战chapter3

深度学习框架pytorch快速开发与实战chapter3

2022-08-02 14:02:00 weixin_50862344

报错

问题1

在这里插入图片描述
出现这种情况的主要原因是环境中有两个libiomp5md.dll文件
①一般环境都会放在conda文件夹的envs下
②或者是直接cmd下输入以下代码

conda info --envs

找到相应环境然后去掉下面那个就行
在这里插入图片描述

问题2:data[0]报错

以下代码均以修正!!!
在这里插入图片描述
将data[0]改成item()就可以了

    if (epoch+1) % 5 == 0:
        # 修改后
        print ('Epoch [%d/%d], Loss: %.4f' %(epoch+1, num_epochs, loss.item()))
        #修改前:
        #% (epoch + 1, num_epochs, loss.data[0]))

(一) 线性回归

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from torch.autograd import Variable



# Hyper Parameters
input_size = 1
output_size = 1
num_epochs = 1000
learning_rate = 0.001

x_train = np.array([[2.3], [4.4], [3.7], [6.1], [7.3], [2.1],[5.6], [7.7], [8.7], [4.1],

                    [6.7], [6.1], [7.5], [2.1], [7.2],

                    [5.6], [5.7], [7.7], [3.1]], dtype=np.float32)

#xtrain生成矩阵数据

y_train = np.array([[3.7], [4.76], [4.], [7.1], [8.6], [3.5],[5.4], [7.6], [7.9], [5.3],

                    [7.3], [7.5], [8.5], [3.2], [8.7],

                    [6.4], [6.6], [7.9], [5.3]], dtype=np.float32)
plt.figure() 
#画图散点图
plt.scatter(x_train,y_train)
plt.xlabel('x_train')
#x轴名称
plt.ylabel('y_train')
#y轴名称
#显示图片
plt.show()

# Linear Regression Model
class LinearRegression(nn.Module):
    def __init__(self, input_size, output_size):
        super(LinearRegression, self).__init__()
        self.linear = nn.Linear(input_size, output_size)  
    
    def forward(self, x):
        out = self.linear(x)
        return out

model = LinearRegression(input_size, output_size)

# Loss and Optimizer
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)  

# Train the Model 
for epoch in range(num_epochs):
    # Convert numpy array to torch Variable
    inputs = Variable(torch.from_numpy(x_train))
    targets = Variable(torch.from_numpy(y_train))

    # Forward + Backward + Optimize
    optimizer.zero_grad()  
    outputs = model(inputs)
    loss = criterion(outputs, targets)
    loss.backward()
    optimizer.step()
    
    if (epoch+1) % 5 == 0:
        # 修改后
        print ('Epoch [%d/%d], Loss: %.4f' %(epoch+1, num_epochs, loss.item()))
        #修改前:
        #% (epoch + 1, num_epochs, loss.data[0]))
        
# Plot the graph



model.eval()
predicted = model(Variable(torch.from_numpy(x_train))).data.numpy()
plt.plot(x_train, y_train, 'ro')
plt.plot(x_train, predicted, label='predict')
plt.legend()
plt.show()

总结一下

  1. 准备数据集
  2. 定义模型
  3. 定义损失函数和优化函数
  4. 开始训练

optimizer.zero_grad() #梯度归零
loss.backward() #反向传播
optimizer.step() #更新参数

绘制散点图基本步骤

  1. 激活一个绘图环境

plt.figure()
为了创建一个图形figure,或者激活一个已经存在的图形figure

  1. 绘制散点图

plt.scatter()函数用于生成一个scatter散点图

  1. x轴,y轴名称
  2. 显示图片

模型构建

class LinearRegression(nn.Module): 
		def __init__(self, input_size, output_size):
        super(LinearRegression, self).__init__()

为什么要super(…).init()
为了是子类初始化之后也能继承父类的属性

损失函数

在这里插入图片描述

nn.MSELoss()

看这个博主的!!!介绍了常用的损失函数

优化函数

看这个博主的!!!

Variable

Variable的介绍

(二)逻辑回归

import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable


# Hyper Parameters 
input_size = 784
num_classes = 10
num_epochs = 10
batch_size = 50
learning_rate = 0.001

# MNIST Dataset (Images and Labels)
train_dataset = dsets.MNIST(root='./data', 
                            train=True, 
                            transform=transforms.ToTensor(),
                            download=True)

test_dataset = dsets.MNIST(root='./data', 
                           train=False, 
                           transform=transforms.ToTensor())

# Dataset Loader (Input Pipline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, 
                                           batch_size=batch_size, 
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset, 
                                          batch_size=batch_size, 
                                          shuffle=False)

# Model
class LogisticRegression(nn.Module):
    def __init__(self, input_size, num_classes):
        super(LogisticRegression, self).__init__()
        self.linear = nn.Linear(input_size, num_classes)
    
    def forward(self, x):
        out = self.linear(x)
        return out

model = LogisticRegression(input_size, num_classes)

# Loss and Optimizer
# Softmax is internally computed.
# Set parameters to be updated.
criterion = nn.CrossEntropyLoss()  
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)  

# Training the Model
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = Variable(images.view(-1, 28*28))
        labels = Variable(labels)
        
        # Forward + Backward + Optimize
        optimizer.zero_grad()
        outputs = model(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        
        if (i+1) % 100 == 0:
            print ('Epoch: [%d/%d], Step: [%d/%d], Loss: %.4f' 
                   % (epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.item()))

# Test the Model
correct = 0
total = 0
for images, labels in test_loader:
    images = Variable(images.view(-1, 28*28))
    outputs = model(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum()
    
print('Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))

# Save the Model
torch.save(model.state_dict(), 'model.pkl')

第一次下载会先下载文件会下载到当前文件目录下的data文件夹中

然后开始训练(大概2-3min)
在这里插入图片描述

浅析一下代码

其实逻辑上和线性回归差不了多少,无非是改了一下损失函数(换成了交叉熵)和优化函数(换成了随机梯度下降)
transforms.ToTensor():接受PIL Image或numpy.ndarray格式,修改通道顺序,修改数据类型最后归一化(除255)

参考表述
在这里插入图片描述

原网站

版权声明
本文为[weixin_50862344]所创,转载请带上原文链接,感谢
https://blog.csdn.net/weixin_50862344/article/details/125945422