当前位置:网站首页>【GCN-RS】MCL: Mixed-Centric Loss for Collaborative Filtering (WWW‘22)
【GCN-RS】MCL: Mixed-Centric Loss for Collaborative Filtering (WWW‘22)
2022-07-25 12:00:00 【chad_ lee】
MCL: Mixed-Centric Loss for Collaborative Filtering (WWW’22)
Pointwise and pairwise The information of loss function mining is too little , Just take samples , Then update the weights
In order to mine more signals from the available preference information , Consider difficult samples and global information .
Collect difficult samples first
E E E It's European distance .
Hard to correct sample Is the distance ratio of the correct sample The distance minus threshold of the negative sample with the smallest distance And a large sample .
E u j > min k ∈ N u E u k − ϵ E_{u j}>\min _{k \in N_{u}} E_{u k}-\epsilon Euj>k∈NuminEuk−ϵ
Hard negative sample It refers to the distance ratio of negative samples The distance from the largest positive sample plus the threshold Even smaller samples .
E u k < max j ∈ P u E u j + ϵ E_{u k}<\max _{j \in P_{u}} E_{u j}+\epsilon Euk<j∈PumaxEuj+ϵ
Mixing Center loss (CML)
The positive and negative sample sets collected are : P u s , N u s \mathrm{P}_{\mathrm{u}}^{\mathrm{s}}, \mathrm{N}_{\mathrm{u}}^{\mathrm{s}} Pus,Nus. In the process of training , Given a batch B( contain m Users ), Define the loss function :
L M C L = 1 α log [ 1 + 1 m ∑ u ∈ B ∑ j ∈ P u s e α ( E u j + λ p ) ] + 1 β log [ 1 + 1 m ∑ u ∈ B ∑ k ∈ N u s e − β ( E u k + λ n ) ] \begin{aligned} L_{M C L} &=\frac{1}{\alpha} \log \left[1+\frac{1}{m} \sum_{u \in B} \sum_{j \in P_{u}^{s}} e^{\alpha\left(E_{u j}+\lambda_{p}\right)}\right] \\ &+\frac{1}{\beta} \log \left[1+\frac{1}{m} \sum_{u \in B} \sum_{k \in N_{u}^{s}} e^{-\beta\left(E_{u k}+\lambda_{n}\right)}\right] \end{aligned} LMCL=α1log⎣⎡1+m1u∈B∑j∈Pus∑eα(Euj+λp)⎦⎤+β1log⎣⎡1+m1u∈B∑k∈Nus∑e−β(Euk+λn)⎦⎤
Explain why you designed this loss, This loss For a pair of positive samples :
∂ L ∂ E u j = w u j + = 1 m ⋅ e α E u j e − α λ p + 1 m ∑ u ′ ∈ B ∑ i ∈ P u ′ s e α E u ′ i = 1 m ⋅ 1 w 1 + ( u , j ) + w 2 + ( u , j ) + w 3 + ( u , j ) \begin{aligned} \frac{\partial L}{\partial E_{u j}} =w_{u j}^{+} &=\frac{1}{m} \cdot \frac{e^{\alpha E_{u j}}}{e^{-\alpha \lambda_{p}+\frac{1}{m}} \sum_{u^{\prime} \in B} \sum_{i \in P_{u^{\prime}}^{s}} e^{\alpha E_{u^{\prime} i}}} \\ &=\frac{1}{m} \cdot \frac{1}{w_{1}^{+}(u, j)+w_{2}^{+}(u, j)+w_{3}^{+}(u, j)} \end{aligned} ∂Euj∂L=wuj+=m1⋅e−αλp+m1∑u′∈B∑i∈Pu′seαEu′ieαEuj=m1⋅w1+(u,j)+w2+(u,j)+w3+(u,j)1

- user - Item Center ( w 1 + w_1^+ w1+): Only with users - The distance of the object , The farther w 1 w_1 w1 The smaller it is ,loss The bigger it is .
- Center of the same type ( w 2 + w_2^+ w2+): Calculate the current positive sample items j j j Relationship with other difficult samples of users . If the sample article j j j The distance from the user is greater than that of other difficult samples , be w 1 w_1 w1 The smaller it is ,loss The bigger it is . This is similar to the object embedding Space plus a constraint , We hope that the distance between the same type of items and users is similar ( stay embedding Space , Items interacted with the same user , Around the user .)
- Same batch Center ( w 3 + w_3^+ w3+): And the same batch Compare with other users in , Provides additional consistency across users , It is hoped that each user is the same distance from its positive sample .

边栏推荐
- brpc源码解析(八)—— 基础类EventDispatcher详解
- toString()与new String()用法区别
- Miidock Brief
- Application and innovation of low code technology in logistics management
- 【云驻共创】AI在数学界有哪些作用?未来对数学界会有哪些颠覆性影响?
- 【GCN-RS】Region or Global? A Principle for Negative Sampling in Graph-based Recommendation (TKDE‘22)
- 程序员送给女孩子的精美礼物,H5立方体,唯美,精致,高清
- JS operator
- 【高并发】SimpleDateFormat类到底为啥不是线程安全的?(附六种解决方案,建议收藏)
- I advise those students who have just joined the work: if you want to enter the big factory, you must master these concurrent programming knowledge! Complete learning route!! (recommended Collection)
猜你喜欢

Attendance system based on w5500

Similarity matrix, diagonalization condition

Risks in software testing phase

Intelligent information retrieval(智能信息检索综述)

【对比学习】Understanding the Behaviour of Contrastive Loss (CVPR‘21)

WIZnet嵌入式以太网技术培训公开课(免费!!!)

【无标题】

PHP curl post x-www-form-urlencoded

硬件连接服务器 tcp通讯协议 gateway

【USB设备设计】--复合设备,双HID高速(64Byte 和 1024Byte)
随机推荐
Introduction to pl/sql, very detailed notes
PHP curl post x-www-form-urlencoded
JS中的数组
油猴脚本链接
教你如何通过MCU将S2E配置为UDP的工作模式
There is no sound output problem in the headphone jack on the front panel of MSI motherboard [solved]
【对比学习】Understanding the Behaviour of Contrastive Loss (CVPR‘21)
Teach you how to configure S2E as the working mode of TCP server through MCU
cookie and session
[imx6ull notes] - a preliminary exploration of the underlying driver of the kernel
brpc源码解析(三)—— 请求其他服务器以及往socket写数据的机制
JS中的对象
A beautiful gift for girls from programmers, H5 cube, beautiful, exquisite, HD
The first C language program (starting from Hello World)
Transformer变体(Sparse Transformer,Longformer,Switch Transformer)
The JSP specification requires that an attribute name is preceded by whitespace
JVM performance tuning methods
【云驻共创】AI在数学界有哪些作用?未来对数学界会有哪些颠覆性影响?
PL/SQL入门,非常详细的笔记
Miidock Brief