当前位置:网站首页>【GCN-RS】MCL: Mixed-Centric Loss for Collaborative Filtering (WWW‘22)
【GCN-RS】MCL: Mixed-Centric Loss for Collaborative Filtering (WWW‘22)
2022-07-25 12:00:00 【chad_ lee】
MCL: Mixed-Centric Loss for Collaborative Filtering (WWW’22)
Pointwise and pairwise The information of loss function mining is too little , Just take samples , Then update the weights
In order to mine more signals from the available preference information , Consider difficult samples and global information .
Collect difficult samples first
E E E It's European distance .
Hard to correct sample Is the distance ratio of the correct sample The distance minus threshold of the negative sample with the smallest distance And a large sample .
E u j > min k ∈ N u E u k − ϵ E_{u j}>\min _{k \in N_{u}} E_{u k}-\epsilon Euj>k∈NuminEuk−ϵ
Hard negative sample It refers to the distance ratio of negative samples The distance from the largest positive sample plus the threshold Even smaller samples .
E u k < max j ∈ P u E u j + ϵ E_{u k}<\max _{j \in P_{u}} E_{u j}+\epsilon Euk<j∈PumaxEuj+ϵ
Mixing Center loss (CML)
The positive and negative sample sets collected are : P u s , N u s \mathrm{P}_{\mathrm{u}}^{\mathrm{s}}, \mathrm{N}_{\mathrm{u}}^{\mathrm{s}} Pus,Nus. In the process of training , Given a batch B( contain m Users ), Define the loss function :
L M C L = 1 α log [ 1 + 1 m ∑ u ∈ B ∑ j ∈ P u s e α ( E u j + λ p ) ] + 1 β log [ 1 + 1 m ∑ u ∈ B ∑ k ∈ N u s e − β ( E u k + λ n ) ] \begin{aligned} L_{M C L} &=\frac{1}{\alpha} \log \left[1+\frac{1}{m} \sum_{u \in B} \sum_{j \in P_{u}^{s}} e^{\alpha\left(E_{u j}+\lambda_{p}\right)}\right] \\ &+\frac{1}{\beta} \log \left[1+\frac{1}{m} \sum_{u \in B} \sum_{k \in N_{u}^{s}} e^{-\beta\left(E_{u k}+\lambda_{n}\right)}\right] \end{aligned} LMCL=α1log⎣⎡1+m1u∈B∑j∈Pus∑eα(Euj+λp)⎦⎤+β1log⎣⎡1+m1u∈B∑k∈Nus∑e−β(Euk+λn)⎦⎤
Explain why you designed this loss, This loss For a pair of positive samples :
∂ L ∂ E u j = w u j + = 1 m ⋅ e α E u j e − α λ p + 1 m ∑ u ′ ∈ B ∑ i ∈ P u ′ s e α E u ′ i = 1 m ⋅ 1 w 1 + ( u , j ) + w 2 + ( u , j ) + w 3 + ( u , j ) \begin{aligned} \frac{\partial L}{\partial E_{u j}} =w_{u j}^{+} &=\frac{1}{m} \cdot \frac{e^{\alpha E_{u j}}}{e^{-\alpha \lambda_{p}+\frac{1}{m}} \sum_{u^{\prime} \in B} \sum_{i \in P_{u^{\prime}}^{s}} e^{\alpha E_{u^{\prime} i}}} \\ &=\frac{1}{m} \cdot \frac{1}{w_{1}^{+}(u, j)+w_{2}^{+}(u, j)+w_{3}^{+}(u, j)} \end{aligned} ∂Euj∂L=wuj+=m1⋅e−αλp+m1∑u′∈B∑i∈Pu′seαEu′ieαEuj=m1⋅w1+(u,j)+w2+(u,j)+w3+(u,j)1

- user - Item Center ( w 1 + w_1^+ w1+): Only with users - The distance of the object , The farther w 1 w_1 w1 The smaller it is ,loss The bigger it is .
- Center of the same type ( w 2 + w_2^+ w2+): Calculate the current positive sample items j j j Relationship with other difficult samples of users . If the sample article j j j The distance from the user is greater than that of other difficult samples , be w 1 w_1 w1 The smaller it is ,loss The bigger it is . This is similar to the object embedding Space plus a constraint , We hope that the distance between the same type of items and users is similar ( stay embedding Space , Items interacted with the same user , Around the user .)
- Same batch Center ( w 3 + w_3^+ w3+): And the same batch Compare with other users in , Provides additional consistency across users , It is hoped that each user is the same distance from its positive sample .

边栏推荐
- Wiznet embedded Ethernet technology training open class (free!!!)
- There is no sound output problem in the headphone jack on the front panel of MSI motherboard [solved]
- W5500多节点连接
- W5500 adjusts the brightness of LED light band through upper computer control
- Make a reliable delay queue with redis
- 软件缺陷的管理
- Web APIs(获取元素 事件基础 操作元素)
- Go 垃圾回收器指南
- Start with the development of wechat official account
- 【高并发】高并发场景下一种比读写锁更快的锁,看完我彻底折服了!!(建议收藏)
猜你喜欢

Transformer变体(Sparse Transformer,Longformer,Switch Transformer)

Attendance system based on w5500

Meta-learning(元学习与少样本学习)

dirReader. Readentries compatibility issues. Exception error domexception

如何解决“W5500芯片在TCP_Client模式下,断电重启之后无法立即连接到服务器”的问题

JS数据类型以及相互转换

Go 垃圾回收器指南

Brpc source code analysis (VII) -- worker bthread scheduling based on parkinglot

brpc源码解析(五)—— 基础类resource pool详解

brpc源码解析(六)—— 基础类socket详解
随机推荐
Teach you how to configure S2E to UDP working mode through MCU
Varest blueprint settings JSON
【Debias】Model-Agnostic Counterfactual Reasoning for Eliminating Popularity Bias in RS(KDD‘21)
LeetCode第303场周赛(20220724)
油猴脚本链接
Power BI----这几个技能让报表更具“逼格“
return 和 finally的执行顺序 ?各位大佬请看过来,
对比学习的应用(LCGNN,VideoMoCo,GraphCL,XMC-GAN)
Start with the development of wechat official account
brpc源码解析(六)—— 基础类socket详解
Brpc source code analysis (VIII) -- detailed explanation of the basic class eventdispatcher
Eigenvalues and eigenvectors of matrices
[USB device design] - composite device, dual hid high-speed (64BYTE and 1024byte)
JS作用域以及预解析
【高并发】SimpleDateFormat类到底为啥不是线程安全的?(附六种解决方案,建议收藏)
30套中国风PPT/创意PPT模板
Introduction to redis
JS interview question: handwriting throttle function
Zero-Shot Image Retrieval(零样本跨模态检索)
PHP uploads the FTP path file to the curl Base64 image on the Internet server